683 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Adaptive code division multiple access protocol for wireless network-on-chip architectures

    Get PDF
    Massive levels of integration following Moore\u27s Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects

    Computing and communications for the software-defined metamaterial paradigm: a context analysis

    Get PDF
    Metamaterials are artificial structures that have recently enabled the realization of novel electromagnetic components with engineered and even unnatural functionalities. Existing metamaterials are specifically designed for a single application working under preset conditions (e.g., electromagnetic cloaking for a fixed angle of incidence) and cannot be reused. Software-defined metamaterials (SDMs) are a much sought-after paradigm shift, exhibiting electromagnetic properties that can be reconfigured at runtime using a set of software primitives. To enable this new technology, SDMs require the integration of a network of controllers within the structure of the metamaterial, where each controller interacts locally and communicates globally to obtain the programmed behavior. The design approach for such controllers and the interconnection network, however, remains unclear due to the unique combination of constraints and requirements of the scenario. To bridge this gap, this paper aims to provide a context analysis from the computation and communication perspectives. Then, analogies are drawn between the SDM scenario and other applications both at the micro and nano scales, identifying possible candidates for the implementation of the controllers and the intra-SDM network. Finally, the main challenges of SDMs related to computing and communications are outlined.Peer ReviewedPostprint (published version

    Using Proportional-Integral-Differential approach for Dynamic Traffic Prediction in Wireless Network-on-Chip

    Get PDF
    The massive integration of cores in multi-core system has enabled chip designer to design systems while meeting the power performance demands of the applications. Wireless interconnection has emerged as an energy efficient solution to the challenges of multi-hop communication over the wireline paths in conventional Networks-on-Chips (NoCs). However, to ensure the full benefits of this novel interconnect technology, design of simple, fair and efficient Medium Access Control (MAC) mechanism to grant access to the on-chip wireless communication channel is needed. Moreover, to adapt to the varying traffic demands from the applications running on a multicore environment, MAC mechanisms should dynamically adjust the transmission slots of the wireless interfaces (WIs). To ensure an efficient utilization of the wireless medium in a Wireless NoC (WiNoC), in this work we present the design of prediction model that is used by two dynamic MAC mechanism to predict the traffic demand of the WIs and respond accordingly by adjusting transmission slots of the WIs. Through system level simulations, we show that the traffic aware MAC mechanisms are more energy efficient as well as capable of sustaining higher data bandwidth in WiNoCs

    Low power digital signal processing

    Get PDF

    Artificial Neural Network Based Prediction Mechanism for Wireless Network on Chips Medium Access Control

    Get PDF
    As per Moore’s law, continuous improvement over silicon process technologies has made the integration of hundreds of cores on to a single chip possible. This has resulted in the paradigm shift towards multicore and many-core chips where, hundreds of cores can be integrated on the same die and interconnected using an on-chip packet-switched network called a Network-on-Chip (NoC). Various tasks running on different cores generate different rates of communication between pairs of cores. This lead to the increase in spatial and temporal variation in the workloads, which impact the long distance data communication over multi-hop wire line paths in conventional NoCs. Among different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnects operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem in traditional NoCs. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). In a WiNoC, the mm-wave wireless interconnect is realized by equipping some NoC switches with an wireless interface (WI) that contains an antenna and transceiver circuit tuned to operate in the mm-wave frequency. To enable collision free and energy-efficient communication among the WIs, the WIs is also equipped with a medium access control mechanism (MAC) unit. Due to the simplicity and low-overhead implementation, a token passing based MAC mechanism to enable Time Division Multiple Access (TDMA) has been adopted in many WiNoC architectures. However, such simple MAC mechanism is agnostic of the demand of the WIs. Based on the tasks mapped on a multicore system the demand through the WIs can vary both spatially and temporally. Hence, if the MAC is agnostic of such demand variation, energy is wasted when no flit is transferred through the wireless channel. To efficiently utilize the wireless channel, MAC mechanisms that can dynamically allocate token possession period of the WIs have been explored in recent time for WiNoCs. In the dynamic MAC mechanism, a history-based prediction is used to predict the bandwidth demand of the WIs to adjust the token possession period with respect to the traffic variation. However, such simple history based predictors are not accurate and limits the performance gain due to the dynamic MACs in a WiNoC. In this work, we investigate the design of an artificial neural network (ANN) based prediction methodology to accurately predict the bandwidth demand of each WI. Through system level simulation, we show that the dynamic MAC mechanisms enabled with the ANN based prediction mechanism can significantly improve the performance of a WiNoC in terms of peak bandwidth, packet energy and latency compared to the state-of-the-art dynamic MAC mechanisms

    UNE PLATEFORME RADIO LOGICIELLE OUVERTE POUR LES SYSTÈMES 3G+

    Get PDF
    This paper describes a software-radio architecture developed for providing real-time wide-band radio communication capabilities in a form attractive for advanced 3G systems research. It is currently being used to implement signaling methods and protocols similar, but not limited to, evolving 3G radio standards (e.g. umts, cdma2000). An overview of the hardware system is provided along with example software implementations on both high-perfo-mance DSP systems and conventional microprocessor

    Medium Access Control Layer Implementation on Field Programmable Gate Array Board for Wireless Networks

    Get PDF
    Triple play services are playing an important role in modern telecommunications systems. Nowadays, more researchers are engaged in investigating the most efficient approaches to integrate these services at a reduced level of operation costs. Field Programmable Gate Array (FPGA) boards have been found as the most suitable platform to test new protocols as they offer high levels of flexibility and customization. This thesis focuses on implementing a framework for the Triple Play Time Division Multiple Access (TP-TDMA) protocol using the Xilinx FPGA Virtex-5 board. This flexible framework design offers network systems engineers a reconfigiirable platform for triple-play systems development. In this work, MicorBlaze is used to perform memory and connectivity tests aiming to ensure the establishment of the connectivity as well as board’s processor stability. Two different approaches are followed to achieve TP-TDMA implementa­tion: systematic and conceptual. In the systematic approach, a bottom-to-top design is chosen where four subsystems are built with various components. Each component is then tested individually to investigate its response. On the other hand, the concep­tual approach is designed with only two components, in which one of them is created with the help of Xilinx Integrated Software Environment (ISE) Core Generator. The system is integrated and then tested to check its overall response. In summary, the work of this thesis is divided into three sections. The first section presents a testing method for Virtex-5 board using MicroBlaze soft processor. The following two sections concentrate on implementing the TP-TDMA protocol on the board by using two design approaches: one based on designing each component from scratch, while the other one focuses more on the system’s broader picture
    • …
    corecore