11,186 research outputs found

    VELOS : a VR platform for ship-evacuation analysis

    Get PDF
    Virtual Environment for Life On Ships (VELOS) is a multi-user Virtual Reality (VR) system that aims to support designers to assess (early in the design process) passenger and crew activities on a ship for both normal and hectic conditions of operations and to improve ship design accordingly. This article focuses on presenting the novel features of VELOS related to both its VR and evacuation-specific functionalities. These features include: (i) capability of multiple users’ immersion and active participation in the evacuation process, (ii) real-time interactivity and capability for making on-the-fly alterations of environment events and crowd-behavior parameters, (iii) capability of agents and avatars to move continuously on decks, (iv) integrated framework for both the simplified and advanced method of analysis according to the IMO/MSC 1033 Circular, (v) enrichment of the ship geometrical model with a topological model suitable for evacuation analysis, (vi) efficient interfaces for the dynamic specification and handling of the required heterogeneous input data, and (vii) post-processing of the calculated agent trajectories for extracting useful information for the evacuation process. VELOS evacuation functionality is illustrated using three evacuation test cases for a ro–ro passenger ship

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets
    corecore