61,843 research outputs found

    Aplikasi Mobile Pengisian Kartu Rencana Studi(KRS) Dan Informasi Kartu Hasil Studi (KHS)Berbasis J2ME

    Get PDF
    Technical High School Musi ( Musi STT ) Palembang is one of the universities located in the city of Palembang , Palembang Musi STT in KRS and see KHS website is still currently still using . Academic is still experiencing a lot of problems such as , KRS and see KHS can only be done on a computer or laptop. So that institutions and students need a mobile application to facilitate data management KRS , KHS and improve services Academic STT Palembang Musi. The purpose of the study was to produce a mobile app and see KRS KHS built using the programming language Java 2 Micro Edition ( J2ME ) and uses a MySQL database processing , apply on line Academic Information Systems and improve services at the Palembang Musi STT . The method used by the author in the preparation of this thesis is a report , Library Studies , Observations on the spot survey research and analyze problems , System Analysis , System Design, System Development , Testing , Implementation System . The results of this study are Designing Applications Technical High School Musi -Based Mobile used to improve services and solve the existing problems in the Palembang Musi STT

    The New Grid

    Get PDF
    The New Grid seeks to provide mobile users with an additional method for off-grid communication, or communication without connection to Internet infrastructure. The motivation for this project was to find another alternative to Internet-dependent communication. Current Internet infrastructure is antiquated; it is expensive to maintain and expand, it has numerous vulnerabilities and high-impact points of failure, and can be rendered unusable for lengthy periods of time by natural disasters or other catastrophes. This current grid will eventually need to be replaced by a more modern, scalable, and adaptive infrastructure. The results of the projects research showed that implementing a library to allow for the creation of mobile peer-to-peer mesh networks could serve as a starting point for a transition from current Internet infrastructure to a more scalable, adaptive, and reliable Internet- independent network grid. Development of The New Grid largely followed the Rational Unified Process, in which the development process is split into four phases: requirements gathering, system design, implementation, and testing. Most of fall quarter was spent outlining functional requirements for the system, designing possible methods of implementation, and researching similar solutions that seek to transition mass mobile communication to a newer, more modern network grid. The New Grid differs from similar solutions because it has been implemented as a modular library. Current systems that allow for off-grid mobile connection exist as independent applications with a defined context and predetermined usability scope. We, the design team, found that implementing the system in the form of a modular library has multiple benefits. Primarily, this implementation would allow The New Grid to be deployed as widely as possible. Developers can both write applications around our library as well as include specific modules into existing applications without impacting other modules or introducing additional overhead into a system. Another benefit of deploying the system as a modular library is adaptability. The current, initial stable build of The New Grid uses Bluetooth Low Energy as its backbone for facilitating communication within large networks of mobile devices; however, this library could use any existing or future communication protocol to facilitate connection as long as a hook is written to allow The New Grid to interface with that protocol. Thus, The New Grid is not limited by which connection protocols currently exist, a property that other similar systems do not possess. The New Grid can be used in any application that requires connection between users. The most common applications would likely be messaging, file sharing, or social networking. While developers may find a variety of uses for The New Grid, its primary purpose is to facilitate reliable connection and secure data transfer in an environment with a large user base. Achieving this goal was proven feasible through research and testing the library with a small cluster of Android devices communicating solely with Bluetooth Low Energy. Expanding this group of a few phones to a larger mesh network of hundreds of devices was shown to be feasible through testing the librarys algorithms and protocols on a large network of virtual devices. As long as developers seek to create applications that allow users to communicate independent of Internet infrastructure, The New Grid will allow smartphone users to communicate off-grid and hopefully spur a switch from infrastructure-dependent mobile communication to user-centric, adaptive, and flexible connection

    The intention to use mobile digital library technology: A focus group study in the United Arab Emirates

    Get PDF
    IGI Global (“IGI”) granted Brunel University London the permission to archive this article in BURA (http://bura.brunel.ac.uk).This paper presents a qualitative study on student adoption of mobile library technology in a developing world context. The findings support the applicability of a number of existing constructs from the technology acceptance literature, such as perceived ease of use, social influence and trust. However, they also suggest the need to modify some adoption factors previously found in the literature to fit the specific context of mobile library adoption. Perceived value was found to be a more relevant overarching adoption factor than perceived usefulness for this context. Facilitating conditions were identified as important but these differed somewhat from those covered in earlier literature. The research also uncovered the importance of trialability for this type of application. The findings provide a basis for improving theory in the area of mobile library adoption and suggest a number of practical design recommendations to help designers of mobile library technology to create applications that meet user needs

    Policy Enforcement with Proactive Libraries

    Full text link
    Software libraries implement APIs that deliver reusable functionalities. To correctly use these functionalities, software applications must satisfy certain correctness policies, for instance policies about the order some API methods can be invoked and about the values that can be used for the parameters. If these policies are violated, applications may produce misbehaviors and failures at runtime. Although this problem is general, applications that incorrectly use API methods are more frequent in certain contexts. For instance, Android provides a rich and rapidly evolving set of APIs that might be used incorrectly by app developers who often implement and publish faulty apps in the marketplaces. To mitigate this problem, we introduce the novel notion of proactive library, which augments classic libraries with the capability of proactively detecting and healing misuses at run- time. Proactive libraries blend libraries with multiple proactive modules that collect data, check the correctness policies of the libraries, and heal executions as soon as the violation of a correctness policy is detected. The proactive modules can be activated or deactivated at runtime by the users and can be implemented without requiring any change to the original library and any knowledge about the applications that may use the library. We evaluated proactive libraries in the context of the Android ecosystem. Results show that proactive libraries can automati- cally overcome several problems related to bad resource usage at the cost of a small overhead.Comment: O. Riganelli, D. Micucci and L. Mariani, "Policy Enforcement with Proactive Libraries" 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 2017, pp. 182-19

    Mobile application platform heterogeneity: Android vs Windows phone vs iOS vs Firefox OS

    Get PDF
    Modern smartphones have a rich spectrum of increasingly sophisticated features, opening opportunities for software-led innovation. Of the large number of platforms to develop new software on, in this paper we look closely at three platforms identified as market leaders for the smartphone market by Gartner Group in 2013 and one platform, Firefox OS, representing a new paradigm for operating systems based on web technologies. We compare the platforms in several different categories, such as software architecture, application development, platform capabilities and constraints, and, finally, developer support. Using the implementation of a mobile version of the tic-tac-toe game on all the four platforms, we seek to investigate strengths, weaknesses and challenges of mobile application development on these platforms. Big differences are highlighted when inspecting community environments, hardware abilities and platform maturity. These inevitably impact upon developer choices when deciding on mobile platform development strategies

    SeMA: A Design Methodology for Building Secure Android Apps

    Full text link
    UX (user experience) designers visually capture the UX of an app via storyboards. This method is also used in Android app development to conceptualize and design apps. Recently, security has become an integral part of Android app UX because mobile apps are used to perform critical activities such as banking, communication, and health. Therefore, securing user information is imperative in mobile apps. In this context, storyboarding tools offer limited capabilities to capture and reason about security requirements of an app. Consequently, security cannot be baked into the app at design time. Hence, vulnerabilities stemming from design flaws can often occur in apps. To address this concern, in this paper, we propose a storyboard based design methodology to enable the specification and verification of security properties of an Android app at design time.Comment: Updates based on AMobile 2019 review
    corecore