2,961 research outputs found

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie

    Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?

    Full text link
    Dense Multi-GPU systems have recently gained a lot of attention in the HPC arena. Traditionally, MPI runtimes have been primarily designed for clusters with a large number of nodes. However, with the advent of MPI+CUDA applications and CUDA-Aware MPI runtimes like MVAPICH2 and OpenMPI, it has become important to address efficient communication schemes for such dense Multi-GPU nodes. This coupled with new application workloads brought forward by Deep Learning frameworks like Caffe and Microsoft CNTK pose additional design constraints due to very large message communication of GPU buffers during the training phase. In this context, special-purpose libraries like NVIDIA NCCL have been proposed for GPU-based collective communication on dense GPU systems. In this paper, we propose a pipelined chain (ring) design for the MPI_Bcast collective operation along with an enhanced collective tuning framework in MVAPICH2-GDR that enables efficient intra-/inter-node multi-GPU communication. We present an in-depth performance landscape for the proposed MPI_Bcast schemes along with a comparative analysis of NVIDIA NCCL Broadcast and NCCL-based MPI_Bcast. The proposed designs for MVAPICH2-GDR enable up to 14X and 16.6X improvement, compared to NCCL-based solutions, for intra- and inter-node broadcast latency, respectively. In addition, the proposed designs provide up to 7% improvement over NCCL-based solutions for data parallel training of the VGG network on 128 GPUs using Microsoft CNTK.Comment: 8 pages, 3 figure

    Components and Interfaces of a Process Management System for Parallel Programs

    Full text link
    Parallel jobs are different from sequential jobs and require a different type of process management. We present here a process management system for parallel programs such as those written using MPI. A primary goal of the system, which we call MPD (for multipurpose daemon), is to be scalable. By this we mean that startup of interactive parallel jobs comprising thousands of processes is quick, that signals can be quickly delivered to processes, and that stdin, stdout, and stderr are managed intuitively. Our primary target is parallel machines made up of clusters of SMPs, but the system is also useful in more tightly integrated environments. We describe how MPD enables much faster startup and better runtime management of parallel jobs. We show how close control of stdio can support the easy implementation of a number of convenient system utilities, even a parallel debugger. We describe a simple but general interface that can be used to separate any process manager from a parallel library, which we use to keep MPD separate from MPICH.Comment: 12 pages, Workshop on Clusters and Computational Grids for Scientific Computing, Sept. 24-27, 2000, Le Chateau de Faverges de la Tour, Franc

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure

    Design and Evaluation of a Collective IO Model for Loosely Coupled Petascale Programming

    Full text link
    Loosely coupled programming is a powerful paradigm for rapidly creating higher-level applications from scientific programs on petascale systems, typically using scripting languages. This paradigm is a form of many-task computing (MTC) which focuses on the passing of data between programs as ordinary files rather than messages. While it has the significant benefits of decoupling producer and consumer and allowing existing application programs to be executed in parallel with no recoding, its typical implementation using shared file systems places a high performance burden on the overall system and on the user who will analyze and consume the downstream data. Previous efforts have achieved great speedups with loosely coupled programs, but have done so with careful manual tuning of all shared file system access. In this work, we evaluate a prototype collective IO model for file-based MTC. The model enables efficient and easy distribution of input data files to computing nodes and gathering of output results from them. It eliminates the need for such manual tuning and makes the programming of large-scale clusters using a loosely coupled model easier. Our approach, inspired by in-memory approaches to collective operations for parallel programming, builds on fast local file systems to provide high-speed local file caches for parallel scripts, uses a broadcast approach to handle distribution of common input data, and uses efficient scatter/gather and caching techniques for input and output. We describe the design of the prototype model, its implementation on the Blue Gene/P supercomputer, and present preliminary measurements of its performance on synthetic benchmarks and on a large-scale molecular dynamics application.Comment: IEEE Many-Task Computing on Grids and Supercomputers (MTAGS08) 200

    Comparison and tuning of MPI implementations in a grid context

    Get PDF
    Today, clusters are often interconnected by long distance networks within grids to offer a huge number of available ressources to a range of users. MPI, the standard communication library used to write parallel applications, has been implemented for clusters. Two main features of grids: long distance networks and technological heterogeneity, raise the question of MPI efficiency in grids. This report presents an evaluation of four recent MPI implementations (MPICH2, MPICH-Madeleine, OpenMPI and GridMPI) in the french research grid: Grid'5000. The comparison is based on the execution of pingpong, NAS Parallel Benchmarks and a real application in geophysics. We show that this implementations present performance differences. Executing MPI applications on the grid can be beneficial if the parameters are well tuned. The paper details the tuning required on each implementation to get the best performances
    • …
    corecore