147 research outputs found

    Exploring sustainability research in computing:where we are and where we go next

    Get PDF
    This paper develops a holistic framework of questions mo- tivating sustainability research in computing in order to en- able new opportunities for critique. Analysis of systemat- ically selected corpora of computing publications demon- strates that several of these question areas are well covered, while others are ripe for further exploration. It also pro- vides insight into which of these questions tend to be ad- dressed by different communities within sustainable com- puting. The framework itself reveals discursive similarities between other existing environmental discourses, enabling reflection and participation with the broader sustainability debate. It is argued that the current computing discourse on sustainability is reformist and premised in a Triple Bottom Line construction of sustainability, and a radical, Quadruple Bottom Line alternative is explored as a new vista for com- puting research

    Design of software defined radio based testbed for smart healthcare

    Get PDF
    Human Activity Recognition (HAR) help to sense the environment of a human being with an objective to serve a diverse range of human-centric applications in health care, smart-homes and the military. The prevailing detection techniques use ambient sensors, cameras and wearable devices that primarily require strenuous deployment overheads and raise privacy concern as well. Monitoring human activities of daily living is a possible way of describing the functional and health status of a human. Therefore, human activity recognition (HAR) is one of genuine components in personalized life-care and healthcare systems, especially for the elderly and disabled. Recent advances in wireless technologies have demonstrated that a person’s activity can modulate the wireless signal, and enable the transfer of information from a human to an RF transceiver, even when the person does not carry a transmitter. The aim of this PhD project is to design a novel, non-invasive, easily deployable, flexible and scalable test-bed for detecting human daily activities that can help to assess the general physical health of a person based on Software Defined Radios (SDRs). The proposed system also allows us to modify the power level of transceiver model, change the operating frequency, use self-design antennas and change the number of subcarriers in real-time. The results obtained using USRP based wireless sensing for activities of daily living are highly accurate as compared to off-the-shelf wireless devices each time when activities and experiments are performed. This system leverage on the channel state information (CSI) to record the minute movement caused by breathing over orthogonal frequency division multiplexing (OFDM) in multiple sub-carriers. The proposed system combines subject count and activities performed in different classes together, resulting in simultaneous identification of occupancy count and activities performed. Different machine learning algorithms namely K-Nearest Neighbour, Decision Tree, Discriminant Analysis, and Naıve Bayes are used to evaluate the overall performance of the test-bed and achieved a high accuracy. The K-nearest neighbour outperformed all classifiers, providing an accuracy of 89.73% for activity detection and 91.01% for breathing monitoring. A deep learning convolutional neural network is engineered and trained on the CSI data to differentiate multi-subject activities. The proposed system can potentially fulfill the needs of future in-home health activity monitoring and is a viable alternative for monitoring public health and well being

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    High-throughput microfluidic assay devices for culturing of soybean and microalgae and microfluidic electrophoretic ion nutrient sensor

    Get PDF
    In the past decade, there are significant challenges in agriculture because of the rapidly growing global population. Meanwhile, microfluidic devices or lab-on-a-chip devices, which are a set of micro-structure etch or molded into glass, silicon wafer, PDMS, or other materials, have been rapidly developed to achieve features, such as mix, separate, sort, sense, and control biochemical environment. The advantages of microfluidic technologies include high-throughput, low cost, precision control, and highly sensitive. In particular, they have offered promising potential for applications in medical diagnosis, drug discovery, and gene sequencing. However, the potential of microfluidic technologies for application in agriculture is far from being developed. This thesis focuses on the application of microfluidic technologies in agriculture. In this thesis, three different types of microfluidic systems were developed to present three approaches in agriculture investigation. Firstly, this report a high throughput approach to build a steady-state discrete relative humidity gradient using a modified multi-well plate. The customized device was applied to generate a set of humidity conditions to study the plant-pathogen interaction for two types of soybean beans, Williams and Williams 82. Next, a microfluidic microalgal bioreactor is presented to culture and screen microalgae strains growth under a set of CO2 concentration conditions. C. reinhardtii strains CC620 were cultured and screened in the customized bioreactor to validate the workability of the system. Growth rates of the cultured strain cells were analyzed under different CO2 concentrations. In addition, a multi-well-plate-based microalgal bioreactor array was also developed to do long-term culturing and screening. This work showed a promising microfluidic bioreactor for in-line screening based on microalgal culture under different CO2 concentrations. Finally, this report presents a microchip sensor system for ions separation and detection basing electrophoresis. It is a system owning high potential in various ions concentration analysis with high specificity and sensitivity. In addition, a solution sampling system was developed to extract solution from the soil. All those presented technologies not only have advantages including high-throughput, low cost, and highly sensitive but also have good extensibility and robustness. With a simple modification, those technologies can be expanded to different application areas due to experimental purposes. Thus, those presented microfluidic technologies provide new approaches and powerful tools in agriculture investigation. Furthermore, they have great potential to accelerate the development of agriculture

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    A compilation of summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitors, responsible NASA organization, and RTOP number indexes are included

    Energy-Use Feedback Engineering - Technology and Information Design for Residential Users

    Get PDF
    The research presented in this study covers a first design iteration of energy feedback for residential users. This research contributes with a framework and new insights into the study of energy-use information for residential users, which exemplifies the challenges and potential of integrating information technology in this part of the energy system
    • 

    corecore