2,496 research outputs found

    Investigation of Vertical Handoff Techniques in Integrated WLAN/Cellular Networks and Performance Analysis of Horizon Handoff in WiMax Networks

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirement for the Degree of Master of Science by Elaheh Arabmakki May 9, 2011

    A Genetic Algorithm-based Framework for Soft Handoff Optimization in Wireless Networks

    Get PDF
    In this paper, a genetic algorithm (GA)-based approach is used to evaluate the probability of successful handoff in heterogeneous wireless networks (HWNs) so as to increase capacity and network performance. The traditional handoff schemes are prone to ping pong and corner effects and developing an optimized handoff scheme for seamless, faster, and less power consuming handoff decision is challenging. The GA scheme can effectively optimize soft handoff decision by selecting the best fit network for the mobile terminal (MT) considering quality of service (QoS) requirements, network parameters and user’s preference in terms of cost of different attachment points for the MT. The robustness and ability to determine global optima for any function using crossover and mutation operations makes GA a promising solution. The developed optimization framework was simulated in Matrix Laboratory (MATLAB) software using MATLAB’s optima tool and results show that an optimal MT attachment point is the one with the highest handoff success probability value which determines direction for successful handoff in HWN environment. The system maintained a 90%  with 4 channels and more while a 75% was obtained even at high traffic intensity

    Hybridisation of genetic algorithm with simulated annealing for vertical-handover in heterogeneous wireless networks

    Get PDF
    To provide the seamless mobility in heterogeneous wireless networks two significant methods, simulated annealing (SA) and genetic algorithms (GAs) are hybrid. In this paradigm, vertical handovers (VHs) are necessary for seamless mobility. In this paper, the hybrid algorithm has the ability to find the optimal network to connect with a good quality of service (QoS) in accordance with the user's preferences. The intelligent algorithm was developed to provide solutions near to real time and to avoid slow and considerable computations according to the features of the mobile devices. Moreover, a cost function is used to sustain the chosen QoS during transition between networks, which is measured in terms of the bandwidth, BER, ABR, SNR and monetary cost. Simulation results presented that choosing the SA rules would minimise the cost function and the GA-SA algorithm could reduce the number of unnecessary handovers, and thereby avoid the 'Ping-Pong' effect

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner
    corecore