24,613 research outputs found

    Dissipative Boussinesq equations

    Get PDF
    The classical theory of water waves is based on the theory of inviscid flows. However it is important to include viscous effects in some applications. Two models are proposed to add dissipative effects in the context of the Boussinesq equations, which include the effects of weak dispersion and nonlinearity in a shallow water framework. The dissipative Boussinesq equations are then integrated numerically.Comment: 40 pages, 15 figures, published in C. R. Mecanique 335 (2007) Other author's papers can be downloaded at http://www.cmla.ens-cachan.fr/~dutyk

    A numerically efficient finite element hydroelastic analysis

    Get PDF
    A finite element hydroelastic analysis formulation is developed on the basis of Toupin's complementary variational principle. Emphasis is placed on the special case of an incompressible fluid model which is applicable to propellant tank hydroelastic analysis. A concise fluid inertia representation results from the assumption of incompressibility and the hydroelastic equations reduce to a simplified form associated with the structure alone. The efficiency of the incompressible hydroelastic formulation in unhanced for both fluid and structure by introduction of harmonic reduction as an alternative to Guyan reduction. The theoretical developments are implemented in the NASTRAN Program and the technique is verified and demonstrated as an efficient and accurate approach with a series of illustrative problems including the 1/8 scale space shuttle external tank

    Assumed-strain finite element technique for accurate modelling of plasticity problems

    Get PDF
    In this work a linear hexahedral element based on an assumed-strain finite element technique is presented for the solution of plasticity problems. The element stems from the NICE formulation and its extensions. Assumed gradient operators are derived via nodal integration from the kinematic-weighted residual; the degrees of freedom are only the displacements at the nodes. The adopted constitutive model is the classical associative von-Mises plasticity model with isotropic and kinematic hardening; in particular a double- step midpoint integration algorithm is adopted for the integration and solution of the relevant nonlinear evolution equations. Efficiency of the proposed method is assessed through simple benchmark problem and comparison with reference solutions

    Visco-potential free-surface flows and long wave modelling

    Get PDF
    In a recent study [DutykhDias2007] we presented a novel visco-potential free surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyse dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.Comment: 29 pages, 13 figures. Some figures were updated. Revised version for European Journal of Mechanics B/Fluids. Other author's papers can be downloaded from http://www.lama.univ-savoie.fr/~dutyk

    A Link-based Mixed Integer LP Approach for Adaptive Traffic Signal Control

    Full text link
    This paper is concerned with adaptive signal control problems on a road network, using a link-based kinematic wave model (Han et al., 2012). Such a model employs the Lighthill-Whitham-Richards model with a triangular fundamental diagram. A variational type argument (Lax, 1957; Newell, 1993) is applied so that the system dynamics can be determined without knowledge of the traffic state in the interior of each link. A Riemann problem for the signalized junction is explicitly solved; and an optimization problem is formulated in continuous-time with the aid of binary variables. A time-discretization turns the optimization problem into a mixed integer linear program (MILP). Unlike the cell-based approaches (Daganzo, 1995; Lin and Wang, 2004; Lo, 1999b), the proposed framework does not require modeling or computation within a link, thus reducing the number of (binary) variables and computational effort. The proposed model is free of vehicle-holding problems, and captures important features of signalized networks such as physical queue, spill back, vehicle turning, time-varying flow patterns and dynamic signal timing plans. The MILP can be efficiently solved with standard optimization software.Comment: 15 pages, 7 figures, current version is accepted for presentation at the 92nd Annual Meeting of Transportation Research Boar

    Theory of spiral wave dynamics in weakly excitable media: asymptotic reduction to a kinematic model and applications

    Full text link
    In a weakly excitable medium, characterized by a large threshold stimulus, the free end of an isolated broken plane wave (wave tip) can either rotate (steadily or unsteadily) around a large excitable core, thereby producing a spiral pattern, or retract causing the wave to vanish at boundaries. An asymptotic analysis of spiral motion and retraction is carried out in this weakly excitable large core regime starting from the free-boundary limit of the reaction-diffusion models, valid when the excited region is delimited by a thin interface. The wave description is shown to naturally split between the tip region and a far region that are smoothly matched on an intermediate scale. This separation allows us to rigorously derive an equation of motion for the wave tip, with the large scale motion of the spiral wavefront slaved to the tip. This kinematic description provides both a physical picture and exact predictions for a wide range of wave behavior, including: (i) steady rotation (frequency and core radius), (ii) exact treatment of the meandering instability in the free-boundary limit with the prediction that the frequency of unstable motion is half the primary steady frequency (iii) drift under external actions (external field with application to axisymmetric scroll ring motion in three-dimensions, and spatial or/and time-dependent variation of excitability), and (iv) the dynamics of multi-armed spiral waves with the new prediction that steadily rotating waves with two or more arms are linearly unstable. Numerical simulations of FitzHug-Nagumo kinetics are used to test several aspects of our results. In addition, we discuss the semi-quantitative extension of this theory to finite cores and pinpoint mathematical subtleties related to the thin interface limit of singly diffusive reaction-diffusion models

    Moment Approximations and Model Cascades for Shallow Flow

    Full text link
    Shallow flow models are used for a large number of applications including weather forecasting, open channel hydraulics and simulation-based natural hazard assessment. In these applications the shallowness of the process motivates depth-averaging. While the shallow flow formulation is advantageous in terms of computational efficiency, it also comes at the price of losing vertical information such as the flow's velocity profile. This gives rise to a model error, which limits the shallow flow model's predictive power and is often not explicitly quantifiable. We propose the use of vertical moments to overcome this problem. The shallow moment approximation preserves information on the vertical flow structure while still making use of the simplifying framework of depth-averaging. In this article, we derive a generic shallow flow moment system of arbitrary order starting from a set of balance laws, which has been reduced by scaling arguments. The derivation is based on a fully vertically resolved reference model with the vertical coordinate mapped onto the unit interval. We specify the shallow flow moment hierarchy for kinematic and Newtonian flow conditions and present 1D numerical results for shallow moment systems up to third order. Finally, we assess their performance with respect to both the standard shallow flow equations as well as with respect to the vertically resolved reference model. Our results show that depending on the parameter regime, e.g. friction and slip, shallow moment approximations significantly reduce the model error in shallow flow regimes and have a lot of potential to increase the predictive power of shallow flow models, while keeping them computationally cost efficient
    corecore