241 research outputs found

    Advances in Radar Remote Sensing of Agricultural Crops: A Review

    Get PDF
    There are enormous advantages of a review article in the field of emerging technology like radar remote sensing applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working in this field

    Application of RADARSAT-2 Polarimetric Data for Land Use and Land Cover Classification and Crop monitoring in Southwestern Ontario

    Get PDF
    Timely and accurate information of land surfaces is desirable for land change detection and crop condition monitoring. Optical data have been widely used in Land Use and Land Cover (LU/LC) mapping and crop condition monitoring. However, due to unfavorable weather conditions, high quality optical images are not always available. Synthetic Aperture Radar (SAR) sensors, such as RADARSAT-2, are able to transmit microwaves through cloud cover and light rain, and thus offer an alternative data source. This study investigates the potential of multi-temporal polarimetric RADARSAT-2 data for LU/LC classification and crop monitoring in the urban rural fringe areas of London, Ontario. Nine LU/LC classes were identified with a high overall accuracy of 91.0%. Also, high correlations have been found within the corn and soybean fields between some polarimetric parameters and Normalized Difference Vegetation Index (NDVI). The results demonstrate the capability of RADARSAT-2 in LU/LC classification and crop condition monitoring

    Application of the Trace Coherence to HH-VV PolInSAR TanDEM-X Data for Vegetation Height Estimation

    Get PDF
    This article investigates, for the first time, the inclusion of the operator Trace Coherence (TrCoh) in polarimetric and interferometric synthetic aperture radar (SAR) methodologies for the estimation of biophysical parameters of vegetation. A modified inversion algorithm based on the well-known Random Volume over Ground (RVoG) model, which employs the TrCoh, is described and evaluated. In this regard, a different set of coherence extrema is used as input for the retrieval stage. In addition, the proposed methodology improves the inversion algorithm by employing analytical solutions rather than approximations. Validation is carried out exploiting single-pass HH-VV bistatic TanDEM-X data, together with reference data acquired over a paddy rice area in Spain. The added value of the TrCoh and the convenience of the use of analytical solutions are assessed by comparing with the conventional polarimetric SAR interferometry (PolInSAR) algorithm. Results demonstrate that the modified proposed methodology is computationally more effective than current methods on this dataset. For the same scene, the steps required for inversion are computed in 6 min with the conventional method, while it only takes 6 s with the proposed approach. Moreover, vegetation height estimates exhibit a higher accuracy with the proposed method in all fields under evaluation. The root-mean-squared error reached with the modified method improves by 7 cm with respect to the conventional algorithm.This work was supported in part by the Spanish Ministry of Science and Innovation, in part by the State Agency of Research (AEI), and in part by the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by Generalitat Valenciana and in part by the European Social Fund (ESF) under Grant ACIF/2018/204

    Polarimetric data for tropical forest monitoring : studies at the Colombian Amazon

    Get PDF
    An urgent need exists for accurate data on the actual tropical forest extent, deforestation, forest structure, regeneration and diversity. The availability of accurate land cover maps and tropical forest type maps, and the possibility to update these maps frequently, is of great importance for the development and success of monitoring systems. For areas like the Amazon the use of optical remote sensing systems as the source of information, is impeded by the permanent presence of clouds that affect the interpretation and the accuracy of the algorithms for classification and map production. The capabilities of radar systems to acquire cloud free images and the penetration of the radar waves into the forest canopy make radar systems suitable for monitoring activities and provide additional and complementary data to optical remote sensing systems. Information regarding forest structure, forest biomass, and vegetation cover and flooding can be associated with radar images because of the typical wave-object interaction properties of the radar systems.In this thesis new algorithms for the classification of radar images and the production of accurate maps are presented. The production of specific maps is studied by applying the developed algorithms to two different study areas in the Colombian Amazon. The first site, San José del Guaviare, is a colonisation area with active deforestation activities and dynamic land cover change. The second area is a pristine natural forest with high diversity of landscapes.A detailed statistical description of the polarimetric AirSAR data is made in terms of backscatter (gamma values), polarimetric phase difference and polarimetric correlation. This approach allows a better interpretation of physical backscatter mechanisms important for interpretation of images in relation to ground parameters. Theoretical cumulative probability density distributions (pdf) are used to describe the mean field values and the standard deviation for a class. A Gausian distribution is used to describe the field average gamma values; a circular Gausian distribution is used to describe the field average HH-VV phase difference and a Beta distribution is used to described the field average HH-VV phase correlation. The accuracy of the estimation of the field-averaged values depends on the level of speckle, i.e. number of independent looks. This effect is included in the calculation of the pdf's and therefore can be simulated.For the Guaviare site the classification algorithm is used to assess the AirSAR data in the production of a land cover type map. Classification accuracies are calculated for different combinations of bands and level of speckle. An accuracy of 98.7% was calculated for a map when combining L-HV and P-RR polarisations. Confusion between classes are studied to evaluate the use of radar bands for monitoring activities, e.g. loss of forest or detection of new deforested areas. In addition a biomass map is created by using the empirical relationship between the combination of the same radar bands and the biomass estimations from 28 plots as measured in the field. The agreement of the biomass map with the land cover map is used to evaluate the biomass classification.For the Araracuara site the classification algorithm is used to assess the use of polarimetric data for forest structural type mapping and indirect forest biophysical characterisation. 23 field-measured plots used for forest structural characterisation are used to assess the accuracy of the classification. A new SAR derived legend is more suitable for the SAR map allowing better physical interpretation of results. A method based on iterated conditional modes is introduced to create maps from the classified radar images, increasing in most of the cases the accuracy of the classification. The structural type map with 15 classes can be classified with accuracies ranging from 68% to 94% depending on the classification and the mapping approach. The relationship between forest structure and polarimetric signal properties is studied in detail by using a new decomposition of polarimetric coherence, based on a simple physical description of the wave-object interactions. The accuracy of the complex coherence is described using the complex Wishart distribution. In addition for the same area, a biomass map is created using the previous structural type characterisation as the basis for the classification, overcoming problems as the well know radar signal saturation.The possibilities and restrictions of creating biomass maps with AirSAR polarimetric images are deeply investigated. Two different approaches are proposed depending on the terrain conditions. A theoretical exploration on the physical limits for radar biomass inversion is made by using a new interface model, called LIFEFORM that describes the layered tropical forest in terms of scatterers. The UTARTCAN scattering model is used to analyse the effect of flooding, forest structure and terrain roughness in the biomass inversion

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Radarkaugseire rakendused metsaüleujutuste ja põllumajanduslike rohumaade jälgimiseks

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö keskendub radarkaugseire rakenduste arendamisele kahes keerukas looduskeskkonnas: üleujutatud metsas ja põllumajanduslikel rohumaadel. Uurimistöö viidi läbi Tartu Observatooriumis, Tartu Ülikoolis, Ventspilsi Kõrgkoolis ja Aalto Ülikoolis. Töö esimene osa käsitleb X-laineala polarimeetrilise radarisignaali käitumist regulaarselt üleujutatavas metsas Soomaa näitel ning teine osa põllumajanduslike rohumaade seisundi ja polarimeetriliste ning interferomeetriliste tehisava-radari parameetrite vahelisi seoseid. 2012 kevadel Soomaa testalal TerraSAR-X andmetega läbi viidud eksperiment näitas, et topelt-peegeldusele tundlik HH-VV polarimeetriline kanal pakub tõesti kontrastsemat tagasihajumisepõhist üleujutatud metsa eristust üleujutamata metsast kui traditsiooniline HH polarimeetriline kanal. HH-VV kanali eelis HH kanali ees on seda suurem, mida madalam on mets ning raagus tingimustes lehtmetsas oli HH-VV kanali eelis HH kanali ees suurem kui okasmetsas. Lisaks on üleujutusele tundlik HH ja VV kanali polarimeetriline faasivahe, mida on soovitatud ka varasemates töödes kasutada täiendava andmeallikana üleujutuste kaardistamisel. Käesolevas doktoritöös mõõdeti polarimeetrilise X-laineala tehisava-radari HH/VV faasivahe suurenemine üleujutuste tõttu erineva kõrgusega okas- ja lehtmetsas. 2013 a vegetatsiooniperioodil korraldati Rannu test-alal välimõõtmistega toetatud eksperiment uurimaks X- ja C-laineala polarimeetrilise ning X-laineala interferomeetrilise tehisava-radari parameetrite undlikkust rohumaade tingimuste muutustele. Ilmnes, et ühepäevase vahega kogutud X-laineala tehisava-radari interferomeetriliste paaride koherentsus korreleerus rohu kõrgusega. Koherentsus oli seda madalam, mida kõrgem oli rohi - leitud seost on võimalik potentsiaalselt rakendada niitmise tuvastamiseks. TerraSAR-X ja RADARSAT-2 polarimeetriliste aegridade analüüsi tulemusel leiti kaks niitmisele tundlikku parameetrit: HH/VV polarimeetriline koherentsus ja polarimeetriline entroopia. Niitmise järel langes HH/VV polarimeetriline koherentsus järsult ning polarimeetriline entroopia tõusis järsult. Rohu tagasikasvamise faasis hakkas HH/VV polarimeetriline koherentsus aeglaselt kasvama ning entroopia aeglaselt kahanema. Täheldatud efekt oli tugevam TerraSARX X-laineala aegridadel kui RADARSAT-2 C-riba tehisava-radari mõõtmistel ning seda selgemini nähtav mida rohkem biomassi niitmise järgselt maha jäi. Leitud HH/VV polarimeetrilise koherentsuse ja polarimeetrilise entroopia käitumine vastas taimkatte osakestepilve radarikiirguse tagasihajumismudelile. Mudeli järgi põhjus- 60 tas eelnimetatud parameetrite iseloomulikku muutust rohukõrte kui dipoolide orientatsiooni ja korrastatuse muut niitmise tõttu, mis on kooskõlas meie välimõõtmiste andmetega.This thesis presents research about the application of radar remote sensing for monitoring of complex natural environments, such as flooded forests and agricultural grasslands. The study was carried out in Tartu Observatory, University of Tartu, Ventspils University College, and Aalto University. The research consists of two distinctive parts devoted to polarimetric analysis of images from a seasonal flooding of wetlands, and to polarimetric and interferometric analysis of a summer-long campaign covering eleven agricultural grasslands. TerraSAR-X data from 2012 were used to assess the use of the double-bounce scattering mechanism for improving the mapping of flooded forest areas. The study confirmed that the HH–VV polarimetric channel that is sensitive to double-bounce scattering provides increased separation between flooded and unflooded forest areas when compared to the conventional HH channel. The increase in separation increases with decreasing forest height, and it is more pronounced for deciduous forests due to the leaf-off conditions during the study. The phase difference information provided by the HH–VV channel may provide additional information for delineating flooded and unflooded forest areas. Time series of X-band (TanDEM-X and COSMO-SkyMed) and C-band (RADARSAT-2) data from 2013 were analyzed in respect to vegetation parameters collected during a field survey. The one-day repeat-pass X-band interferometric coherence was shown to be correlated to the grassland vegetation height. The coherence was also found to be potentially useful for detecting mowing events. The polarimetric analysis of TanDEM-X and RADARSAT-2 data identified two parameters sensitive to mowing events - the HH/VV polarimetric coherence magnitude and the H2α entropy. Mowing of vegetation consistently caused the coherence magnitude to decrease and the entropy to increase. The effect was more pronounced in case of X-band data. Additionally, the effect was stronger with more vegetation left on the ground after mowing. The effect was explained using a vegetation particle scattering model. The changes in polarimetric variables was shown to be caused by the change of orientation and the randomness of the vegetation

    A Simple RVoG Test for PolInSAR Data

    Get PDF
    In this paper, we present a simple algorithm for assessing the validity of the RVoG model for PolInSAR-based inversion techniques. This approach makes use of two important features characterizing a homogeneous random volume over a ground surface, i.e., the independence on polarization states of wave propagation through the volume and the structure of the polarimetric interferometric coherency matrix. These two features have led to two different methods proposed in the literature for retrieving the topographic phase within natural covers, i.e., the well-known line fitting procedure and the observation of the (1, 2) element of the polarimetric interferometric coherency matrix. We show that differences between outputs from both approaches can be interpreted in terms of the PolInSAR modeling based on the Freeman-Durden concept, and this leads to the definition of a RVoG/non-RVoG test. The algorithm is tested with both indoor and airborne data over agricultural and tropical forest areas.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and EU FEDER under Project TEC2011-28201-C02-02

    The BIOMASS level 2 prototype processor : design and experimental results of above-ground biomass estimation

    Get PDF
    BIOMASS is ESA’s seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass (AGB), forest height (FH) and severe forest disturbance (FD) globally with a particular focus on tropical forests. This paper presents the algorithms developed to estimate these biophysical parameters from the BIOMASS level 1 SAR measurements and their implementation in the BIOMASS level 2 prototype processor with a focus on the AGB product. The AGB product retrieval uses a physically-based inversion model, using ground-canceled level 1 data as input. The FH product retrieval applies a classical PolInSAR inversion, based on the Random Volume over Ground Model (RVOG). The FD product will provide an indication of where significant changes occurred within the forest, based on the statistical properties of SAR data. We test the AGB retrieval using modified airborne P-Band data from the AfriSAR and TropiSAR campaigns together with reference data from LiDAR-based AGB maps and plot-based ground measurements. For AGB estimation based on data from a single heading, comparison with reference data yields relative Root Mean Square Difference (RMSD) values mostly between 20% and 30%. Combining different headings in the estimation process significantly improves the AGB retrieval to slightly less than 20%. The experimental results indicate that the implemented retrieval scheme provides robust results that are within mission requirements
    corecore