2,345 research outputs found

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes

    Get PDF
    We propose three private information retrieval (PIR) protocols for distributed storage systems (DSSs) where data is stored using an arbitrary linear code. The first two protocols, named Protocol 1 and Protocol 2, achieve privacy for the scenario with noncolluding nodes. Protocol 1 requires a file size that is exponential in the number of files in the system, while Protocol 2 requires a file size that is independent of the number of files and is hence simpler. We prove that, for certain linear codes, Protocol 1 achieves the maximum distance separable (MDS) PIR capacity, i.e., the maximum PIR rate (the ratio of the amount of retrieved stored data per unit of downloaded data) for a DSS that uses an MDS code to store any given (finite and infinite) number of files, and Protocol 2 achieves the asymptotic MDS-PIR capacity (with infinitely large number of files in the DSS). In particular, we provide a necessary and a sufficient condition for a code to achieve the MDS-PIR capacity with Protocols 1 and 2 and prove that cyclic codes, Reed-Muller (RM) codes, and a class of distance-optimal local reconstruction codes achieve both the finite MDS-PIR capacity (i.e., with any given number of files) and the asymptotic MDS-PIR capacity with Protocols 1 and 2, respectively. Furthermore, we present a third protocol, Protocol 3, for the scenario with multiple colluding nodes, which can be seen as an improvement of a protocol recently introduced by Freij-Hollanti et al.. Similar to the noncolluding case, we provide a necessary and a sufficient condition to achieve the maximum possible PIR rate of Protocol 3. Moreover, we provide a particular class of codes that is suitable for this protocol and show that RM codes achieve the maximum possible PIR rate for the protocol. For all three protocols, we present an algorithm to optimize their PIR rates.Comment: This work is the extension of the work done in arXiv:1612.07084v2. The current version introduces further refinement to the manuscript. Current version will appear in the IEEE Transactions on Information Theor
    • …
    corecore