98,879 research outputs found

    The degree of functions and weights in linear codes

    Get PDF
    AbstractProperties of the weight distribution of low-dimensional generalized Reed–Muller codes are used to obtain restrictions on the weight distribution of linear codes over arbitrary fields. These restrictions are used in non-existence proofs for ternary linear code with parameters [74,10,44] [82,6,53] and [96,6,62]

    Higher Hamming weights for locally recoverable codes on algebraic curves

    Get PDF
    We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some Hermitian LRC codes. [1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic curves. arXiv preprint arXiv:1501.04904, 2015

    Generalized Hamming weights of affine cartesian codes

    Get PDF
    In this article, we give the answer to the following question: Given a field F\mathbb{F}, finite subsets A1,,AmA_1,\dots,A_m of F\mathbb{F}, and rr linearly independent polynomials f1,,frF[x1,,xm]f_1,\dots,f_r \in \mathbb{F}[x_1,\dots,x_m] of total degree at most dd. What is the maximal number of common zeros f1,,frf_1,\dots,f_r can have in A1××AmA_1 \times \cdots \times A_m? For F=Fq\mathbb{F}=\mathbb{F}_q, the finite field with qq elements, answering this question is equivalent to determining the generalized Hamming weights of the so-called affine Cartesian codes. Seen in this light, our work is a generalization of the work of Heijnen--Pellikaan for Reed--Muller codes to the significantly larger class of affine Cartesian codes.Comment: 12 Page

    p-Adic estimates of Hamming weights in Abelian codes over Galois rings

    Get PDF
    A generalization of McEliece's theorem on the p-adic valuation of Hamming weights of words in cyclic codes is proved in this paper by means of counting polynomial techniques introduced by Wilson along with a technique known as trace-averaging introduced here. The original theorem of McEliece concerned cyclic codes over prime fields. Delsarte and McEliece later extended this to Abelian codes over finite fields. Calderbank, Li, and Poonen extended McEliece's original theorem to cover cyclic codes over the rings /spl Zopf//sub 2//sup d/, Wilson strengthened their results and extended them to cyclic codes over /spl Zopf//sub p//sup d/, and Katz strengthened Wilson's results and extended them to Abelian codes over /spl Zopf//sub p//sup d/. It is natural to ask whether there is a single analogue of McEliece's theorem which correctly captures the behavior of codes over all finite fields and all rings of integers modulo prime powers. In this paper, this question is answered affirmatively: a single theorem for Abelian codes over Galois rings is presented. This theorem contains all previously mentioned results and more

    p-Adic valuation of weights in Abelian codes over /spl Zopf/(p/sup d/)

    Get PDF
    Counting polynomial techniques introduced by Wilson are used to provide analogs of a theorem of McEliece. McEliece's original theorem relates the greatest power of p dividing the Hamming weights of words in cyclic codes over GF (p) to the length of the smallest unity-product sequence of nonzeroes of the code. Calderbank, Li, and Poonen presented analogs for cyclic codes over /spl Zopf/(2/sup d/) using various weight functions (Hamming, Lee, and Euclidean weight as well as count of occurrences of a particular symbol). Some of these results were strengthened by Wilson, who also considered the alphabet /spl Zopf/(p/sup d/) for p an arbitrary prime. These previous results, new strengthened versions, and generalizations are proved here in a unified and comprehensive fashion for the larger class of Abelian codes over /spl Zopf/(p/sup d/) with p any prime. For Abelian codes over /spl Zopf//sub 4/, combinatorial methods for use with counting polynomials are developed. These show that the analogs of McEliece's theorem obtained by Wilson (for Hamming weight, Lee weight, and symbol counts) and the analog obtained here for Euclidean weight are sharp in the sense that they give the maximum power of 2 that divides the weights of all the codewords whose Fourier transforms have a specified support
    corecore