2,716 research outputs found

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Edge-decompositions of graphs with high minimum degree

    Get PDF
    A fundamental theorem of Wilson states that, for every graph FF, every sufficiently large FF-divisible clique has an FF-decomposition. Here a graph GG is FF-divisible if e(F)e(F) divides e(G)e(G) and the greatest common divisor of the degrees of FF divides the greatest common divisor of the degrees of GG, and GG has an FF-decomposition if the edges of GG can be covered by edge-disjoint copies of FF. We extend this result to graphs GG which are allowed to be far from complete. In particular, together with a result of Dross, our results imply that every sufficiently large K3K_3-divisible graph of minimum degree at least 9n/10+o(n)9n/10+o(n) has a K3K_3-decomposition. This significantly improves previous results towards the long-standing conjecture of Nash-Williams that every sufficiently large K3K_3-divisible graph with minimum degree at least 3n/43n/4 has a K3K_3-decomposition. We also obtain the asymptotically correct minimum degree thresholds of 2n/3+o(n)2n/3 +o(n) for the existence of a C4C_4-decomposition, and of n/2+o(n)n/2+o(n) for the existence of a C2ℓC_{2\ell}-decomposition, where ℓ≥3\ell\ge 3. Our main contribution is a general `iterative absorption' method which turns an approximate or fractional decomposition into an exact one. In particular, our results imply that in order to prove an asymptotic version of Nash-Williams' conjecture, it suffices to show that every K3K_3-divisible graph with minimum degree at least 3n/4+o(n)3n/4+o(n) has an approximate K3K_3-decomposition,Comment: 41 pages. This version includes some minor corrections, updates and improvement

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor
    • …
    corecore