6,986 research outputs found

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    On Linkedness of Cartesian Product of Graphs

    Full text link
    We study linkedness of Cartesian product of graphs and prove that the product of an aa-linked and a bb-linked graphs is (a+b1)(a+b-1)-linked if the graphs are sufficiently large. Further bounds in terms of connectivity are shown. We determine linkedness of product of paths and product of cycles
    corecore