9 research outputs found

    Resident-invader dynamics of similar strategies in fluctuating environments

    Get PDF
    We study resident-invader dynamics in fluctuating environments when the invader and the resident have close but distinct strategies. First we focus on a class of continuous-time models of unstructured populations of multi-dimensional strategies, which incorporates environmental feedback and environmental stochasticity. Then we generalize our results to a class of structured population models. We classify the generic population dynamical outcomes of an invasion event when the resident population in a given environment is non-growing on the long-run and stochastically persistent. Our approach is based on the series expansion of a model with respect to the small strategy difference, and on the analysis of a stochastic fast-slow system induced by time-scale separation. Theoretical and numerical analyses show that the total size of the resident and invader population varies stochastically and dramatically in time, while the relative size of the invader population changes slowly and asymptotically in time. Thereby the classification is based on the asymptotic behavior of the relative population size, and which is shown to be fully determined by invasion criteria (i.e., without having to study the full generic dynamical system). Our results extend and generalize previous results for a stable resident equilibrium (particularly, Geritz in J Math Biol 50(1):67-82, 2005; Dercole and Geritz in J Theor Biol 394:231-254, 2016) to non-equilibrium resident population dynamics as well as resident dynamics with stochastic (or deterministic) drivers.Peer reviewe

    Dynamical Systems; Proceedings of an IIASA Workshop, Sopron, Hungary, September 9-13, 1985

    Get PDF
    The investigation of special topics in systems dynamics -- uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory -- has become a major issue at the System and Decision Sciences Research Program of IIASA. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under variations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a whole "tube" of trajectories assigned to a system with uncertain parameters and to resolve some inverse problems of control theory within numerically stable solution schemes. The second perspective is to investigate generic properties of dynamic systems that are due to nonlinearity (as bifurcations theory, chaotic behavior, stability properties, and related problems in the qualitative theory of differential systems). Special stress is given to the applications of nonlinear dynamic systems theory to biomathematics and ecology. The proceedings of a workshop on the "Mathematics of Dynamic Processes", dealing with these topics is presented in this volume

    Mathematical control theory and Finance

    Get PDF
    Control theory provides a large set of theoretical and computational tools with applications in a wide range of fields, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to find solutions to ”real life” problems, as is the case in robotics, control of industrial processes or finance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the financial analyst to possess a high level of mathematical skills. Conversely, the complex challenges posed by the problems and models relevant to finance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical finance. Up to now, other branches of control theory have found comparatively less application in financial problems. To some extent, deterministic and stochastic control theories developed as different branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these fields has intensified. Some concepts from stochastic calculus (e.g., rough paths) have drawn the attention of the deterministic control theory community. Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic control. We strongly believe in the possibility of a fruitful collaboration between specialists of deterministic and stochastic control theory and specialists in finance, both from academic and business backgrounds. It is this kind of collaboration that the organizers of the Workshop on Mathematical Control Theory and Finance wished to foster. This volume collects a set of original papers based on plenary lectures and selected contributed talks presented at the Workshop. They cover a wide range of current research topics on the mathematics of control systems and applications to finance. They should appeal to all those who are interested in research at the junction of these three important fields as well as those who seek special topics within this scope.info:eu-repo/semantics/publishedVersio

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore