3,978 research outputs found

    Random two-component spanning forests

    Full text link
    We study random two-component spanning forests (22SFs) of finite graphs, giving formulas for the first and second moments of the sizes of the components, vertex-inclusion probabilities for one or two vertices, and the probability that an edge separates the components. We compute the limit of these quantities when the graph tends to an infinite periodic graph in Rd{\mathbb R}^d

    Network Discovery by Generalized Random Walks

    Full text link
    We investigate network exploration by random walks defined via stationary and adaptive transition probabilities on large graphs. We derive an exact formula valid for arbitrary graphs and arbitrary walks with stationary transition probabilities (STP), for the average number of discovered edges as function of time. We show that for STP walks site and edge exploration obey the same scaling ∼nλ\sim n^{\lambda} as function of time nn. Therefore, edge exploration on graphs with many loops is always lagging compared to site exploration, the revealed graph being sparse until almost all nodes have been discovered. We then introduce the Edge Explorer Model, which presents a novel class of adaptive walks, that perform faithful network discovery even on dense networks.Comment: 23 pages, 7 figure

    The Cover Time of a Biased Random Walk on a Random Regular Graph of Odd Degree

    Get PDF
    We consider a random walk process, introduced by Orenshtein and Shinkar [Tal Orenshtein and Igor Shinkar, 2014], which prefers to visit previously unvisited edges, on the random r-regular graph G_r for any odd r >= 3. We show that this random walk process has asymptotic vertex and edge cover times 1/(r-2)n log n and r/(2(r-2))n log n, respectively, generalizing the result from [Cooper et al., to appear] from r = 3 to any larger odd r. This completes the study of the vertex cover time for fixed r >= 3, with [Petra Berenbrink et al., 2015] having previously shown that G_r has vertex cover time asymptotic to rn/2 when r >= 4 is even

    Choice and bias in random walks

    Get PDF
    We analyse the following random walk process inspired by the power-of-two-choice paradigm: starting from a given vertex, at each step, unlike the simple random walk (SRW) that always moves to a randomly chosen neighbour, we have the choice between two uniformly and independently chosen neighbours. We call this process the choice random walk (CRW). We first prove that for any graph, there is a strategy for the CRW that visits any given vertex in expected tim

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model

    Full text link
    The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction (PSP) both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization (ACO) and Markov Chain Monte Carlo (MCMC) that we called Hybrid Monte Carlo Ant Colony Optimization (HMCACO). We describe this method and compare results obtained on well known HP instances in the 3 dimensional cubic lattice to those obtained with standard ACO and Simulated Annealing (SA). All methods were implemented using an unconstrained neighborhood and a modified objective function to prevent the creation of overlapping walks. Results show that our methods perform better than the other heuristics in all benchmark instances.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Processes on Unimodular Random Networks

    Full text link
    We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodular random networks. We give properties of a trace associated to unimodular random networks with applications to stochastic comparison of continuous-time random walk.Comment: 66 pages; 3rd version corrects formula (4.4) -- the published version is incorrect --, as well as a minor error in the proof of Proposition 4.10; 4th version corrects proof of Proposition 7.1; 5th version corrects proof of Theorem 5.1; 6th version makes a few more minor correction

    Local limits of uniform triangulations in high genus

    Full text link
    We prove a conjecture of Benjamini and Curien stating that the local limits of uniform random triangulations whose genus is proportional to the number of faces are the Planar Stochastic Hyperbolic Triangulations (PSHT) defined in arXiv:1401.3297. The proof relies on a combinatorial argument and the Goulden--Jackson recurrence relation to obtain tightness, and probabilistic arguments showing the uniqueness of the limit. As a consequence, we obtain asymptotics up to subexponential factors on the number of triangulations when both the size and the genus go to infinity. As a part of our proof, we also obtain the following result of independent interest: if a random triangulation of the plane TT is weakly Markovian in the sense that the probability to observe a finite triangulation tt around the root only depends on the perimeter and volume of tt, then TT is a mixture of PSHT.Comment: 36 pages, 10 figure
    • …
    corecore