12,692 research outputs found

    Data Provenance and Management in Radio Astronomy: A Stream Computing Approach

    Get PDF
    New approaches for data provenance and data management (DPDM) are required for mega science projects like the Square Kilometer Array, characterized by extremely large data volume and intense data rates, therefore demanding innovative and highly efficient computational paradigms. In this context, we explore a stream-computing approach with the emphasis on the use of accelerators. In particular, we make use of a new generation of high performance stream-based parallelization middleware known as InfoSphere Streams. Its viability for managing and ensuring interoperability and integrity of signal processing data pipelines is demonstrated in radio astronomy. IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift from conventional data mining techniques (involving analysis of existing data from databases) towards real-time analytic processing. We discuss using InfoSphere Streams for effective DPDM in radio astronomy and propose a way in which InfoSphere Streams can be utilized for large antennae arrays. We present a case-study: the InfoSphere Streams implementation of an autocorrelating spectrometer, and using this example we discuss the advantages of the stream-computing approach and the utilization of hardware accelerators

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201

    Fast and Simple Relational Processing of Uncertain Data

    Full text link
    This paper introduces U-relations, a succinct and purely relational representation system for uncertain databases. U-relations support attribute-level uncertainty using vertical partitioning. If we consider positive relational algebra extended by an operation for computing possible answers, a query on the logical level can be translated into, and evaluated as, a single relational algebra query on the U-relation representation. The translation scheme essentially preserves the size of the query in terms of number of operations and, in particular, number of joins. Standard techniques employed in off-the-shelf relational database management systems are effective for optimizing and processing queries on U-relations. In our experiments we show that query evaluation on U-relations scales to large amounts of data with high degrees of uncertainty.Comment: 12 pages, 14 figure

    Forecasting the cost of processing multi-join queries via hashing for main-memory databases (Extended version)

    Full text link
    Database management systems (DBMSs) carefully optimize complex multi-join queries to avoid expensive disk I/O. As servers today feature tens or hundreds of gigabytes of RAM, a significant fraction of many analytic databases becomes memory-resident. Even after careful tuning for an in-memory environment, a linear disk I/O model such as the one implemented in PostgreSQL may make query response time predictions that are up to 2X slower than the optimal multi-join query plan over memory-resident data. This paper introduces a memory I/O cost model to identify good evaluation strategies for complex query plans with multiple hash-based equi-joins over memory-resident data. The proposed cost model is carefully validated for accuracy using three different systems, including an Amazon EC2 instance, to control for hardware-specific differences. Prior work in parallel query evaluation has advocated right-deep and bushy trees for multi-join queries due to their greater parallelization and pipelining potential. A surprising finding is that the conventional wisdom from shared-nothing disk-based systems does not directly apply to the modern shared-everything memory hierarchy. As corroborated by our model, the performance gap between the optimal left-deep and right-deep query plan can grow to about 10X as the number of joins in the query increases.Comment: 15 pages, 8 figures, extended version of the paper to appear in SoCC'1

    A-twisted correlators and Hori dualities

    Full text link
    The Hori-Tong and Hori dualities are infrared dualities between two-dimensional gauge theories with N=(2,2)\mathcal{N}{=}(2,2) supersymmetry, which are reminiscent of four-dimensional Seiberg dualities. We provide additional evidence for those dualities with U(Nc)U(N_c), USp(2Nc)USp(2N_c), SO(N)SO(N) and O(N)O(N) gauge groups, by matching correlation functions of Coulomb branch operators on a Riemann surface Σg\Sigma_g, in the presence of the topological AA-twist. The O(N)O(N) theories studied, denoted by O+(N)O_+ (N) and O−(N)O_- (N), can be understood as Z2\mathbb{Z}_2 orbifolds of an SO(N)SO(N) theory. The correlators of these theories on Σg\Sigma_g with g>0g > 0 are obtained by computing correlators with Z2\mathbb{Z}_2-twisted boundary conditions and summing them up with weights determined by the orbifold projection.Comment: 45 pages plus appendix; v2: updated bibliography and acknowledgement
    • …
    corecore