1,388 research outputs found

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Study of Multi-Classification of Advanced Daily Life Activities on SHIMMER Sensor Dataset

    Get PDF
    Today the field of wireless sensors have the dominance in almost every person’s daily life. Therefore researchers are exasperating to make these sensors more dynamic, accurate and high performance computational devices as well as small in size, and also in the application area of these small sensors. The wearable sensors are the one type which are used to acquire a person’s behavioral characteristics. The applications of wearable sensors are healthcare, entertainment, fitness, security and military etc. Human activity recognition (HAR) is the one example, where data received from wearable sensors are further processed to identify the activities executed by the individuals. The HAR system can be used in fall detection, fall prevention and also in posture recognition. The recognition of activities is further divided into two categories, the un-supervised learning and the supervised learning. In this paper we first discussed some existing wearable sensors based HAR systems, then briefly described some classifiers (supervised learning) and then the methodology of how we applied the multiple classification techniques using a benchmark data set of the shimmer sensors placed on human body, to recognize the human activity. Our results shows that the methods are exceptionally accurate and efficient in comparison with other classification methods. We also compare the results and analyzed the accuracy of different classifiers

    Linguistic probability theory

    Get PDF
    In recent years probabilistic knowledge-based systems such as Bayesian networks and influence diagrams have come to the fore as a means of representing and reasoning about complex real-world situations. Although some of the probabilities used in these models may be obtained statistically, where this is impossible or simply inconvenient, modellers rely on expert knowledge. Experts, however, typically find it difficult to specify exact probabilities and conventional representations cannot reflect any uncertainty they may have. In this way, the use of conventional point probabilities can damage the accuracy, robustness and interpretability of acquired models. With these concerns in mind, psychometric researchers have demonstrated that fuzzy numbers are good candidates for representing the inherent vagueness of probability estimates, and the fuzzy community has responded with two distinct theories of fuzzy probabilities.This thesis, however, identifies formal and presentational problems with these theories which render them unable to represent even very simple scenarios. This analysis leads to the development of a novel and intuitively appealing alternative - a theory of linguistic probabilities patterned after the standard Kolmogorov axioms of probability theory. Since fuzzy numbers lack algebraic inverses, the resulting theory is weaker than, but generalises its classical counterpart. Nevertheless, it is demonstrated that analogues for classical probabilistic concepts such as conditional probability and random variables can be constructed. In the classical theory, representation theorems mean that most of the time the distinction between mass/density distributions and probability measures can be ignored. Similar results are proven for linguistic probabiliities.From these results it is shown that directed acyclic graphs annotated with linguistic probabilities (under certain identified conditions) represent systems of linguistic random variables. It is then demonstrated these linguistic Bayesian networks can utilise adapted best-of-breed Bayesian network algorithms (junction tree based inference and Bayes' ball irrelevancy calculation). These algorithms are implemented in ARBOR, an interactive design, editing and querying tool for linguistic Bayesian networks.To explore the applications of these techniques, a realistic example drawn from the domain of forensic statistics is developed. In this domain the knowledge engineering problems cited above are especially pronounced and expert estimates are commonplace. Moreover, robust conclusions are of unusually critical importance. An analysis of the resulting linguistic Bayesian network for assessing evidential support in glass-transfer scenarios highlights the potential utility of the approach

    Fuzzy C-means-based scenario bundling for stochastic service network design

    Get PDF
    Stochastic service network designs with uncertain demand represented by a set of scenarios can be modelled as a large-scale two-stage stochastic mixed-integer program (SMIP). The progressive hedging algorithm (PHA) is a decomposition method for solving the resulting SMIP. The computational performance of the PHA can be greatly enhanced by decomposing according to scenario bundles instead of individual scenarios. At the heart of bundle-based decomposition is the method for grouping the scenarios into bundles. In this paper, we present a fuzzy c-means-based scenario bundling method to address this problem. Rather than full membership of a bundle, which is typically the case in existing scenario bundling strategies such as k-means, a scenario has partial membership in each of the bundles and can be assigned to more than one bundle in our method. Since the multiple bundle membership of a scenario induces overlap between the bundles, we empirically investigate whether and how the amount of overlap controlled by a fuzzy exponent would affect the performance of the PHA. Experimental results for a less-than-truckload transportation network optimization problem show that the number of iterations required by the PHA to achieve convergence reduces dramatically with large fuzzy exponents, whereas the computation time increases significantly. Experimental studies were conducted to find out a good fuzzy exponent to strike a trade-off between the solution quality and the computational time

    Acta Polytechnica Hungarica 2018

    Get PDF
    corecore