39,932 research outputs found

    On the construction of stable project baseline schedules.

    Get PDF
    The vast majority of project scheduling efforts assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. It is of interest to develop pre-schedules that can absorb disruptions in activity durations without affecting the planning of other activities, such that co-ordination of resources and material procurement for each of the activities can be performed as smoothly as possible. The objective of this paper is to develop and evaluate various approaches for constructing a stable pre-schedule, which is unlikely to undergo major changes when it needs to be repaired as a reaction to minor activity duration disruptions.

    The complexity of generating robust resource-constrained baseline schedules.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. Robustness can also be achieved by making the schedule makespan insensitive to variability. In this paper, we describe models for the generation of stable and insensitive baseline schedules for resource-constrained scheduling problems and present results on their complexity status. We start from a project scheduling viewpoint and derive results on machine scheduling sub-problems.Complexity; Information; Product scheduling; Robustness; sensitivity; stability;

    A tabu search procedure for generating robust project baseline schedules under stochastic resource availabilities.

    Get PDF
    The majority of research efforts in project scheduling assume a static and deterministic environment with complete information. In practice, however, these assumptions will hardly, if ever, be satisfied. Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against anticipated disruptions that may occur during project execution. In this paper, we focus on disruptions that may be caused by stochastic resource availabilities and aim at generating stable baseline schedules, where the solution robustness (stability) of the baseline schedule is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate free slack based objective function. The effectiveness of the procedure is demonstrated by extensive computational results obtained on a set of randomly generated test instances.

    The trade-off between stability and makespan in resource-constrained project scheduling.

    Get PDF
    During the last decade, considerable research efforts in the project scheduling literature have concentrated on resource-constrained project scheduling under uncertainty. Most of this research focuses on protecting the project due date against disruptions during execution. Few efforts have been made to protect the starting times of intermediate activities. In this paper, we develop a heuristic algorithm for minimizing a stability cost function (weighted sum of deviations between planned and realized activity starting times). The algorithm basically proposes a clever way to scatter time buffers throughout the baseline schedule. We provide an extensive simulation experiment to investigate the trade-off between quality robustness (measured in terms of project duration) and solution robustness (stability). We address the issue whether to concentrate safety time in so-called project and feeding buffers in order to protect the planned project completion time or to scatter safety time throughout the baseline schedule in order to enhance stability.Project management; Scheduling/sequencing; Simulation methods;

    A tabu search procedure for developing robust predicitive project schedules.

    Get PDF
    Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against disruptions that may occur during project execution. In this paper, we focus on disruptions caused by stochastic resource availabilities and aim at generating stable baseline schedules. A schedule’s robustness (stability) is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate, free slack based objective function. Its effectiveness is demonstrated by extensive computational results obtained on a set of randomly generated test instances.Project scheduling; Robustness; Proactive; Stability;

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    The use of buffers in project management: the trade-off between stability and makespan.

    Get PDF
    During execution, projects may be subject to considerable uncertainty, which may lead to numerous schedule disruptions. Recent research efforts have focused on the generation of robust project baseline schedules that are protected against possible disruptions that may occur during schedule execution. The fundamental research issue we address in this paper is the potential trade-off between the quality robustness (measured in terms of project duration) and solution robustness (stability, measured in terms of the deviation between the planned and realised start times of the projected schedule). We provide an extensive analysis of the results of a simulation experiment set up to investigate whether it is beneficial to concentrate safety time in project and feeding buffers, or whether it is preferable to insert time buffers that are scattered in a clever way throughout the baseline project schedule in order to maximize schedule stability.Management; Project management; Project scheduling; Quality; Quality robustness; Robustness; Schedule stability; Scheduling; Simulation; Stability; Time; Uncertainty;

    Solution and quality robust project scheduling: a methodological framework.

    Get PDF
    The vast majority of the research efforts in project scheduling over the past several years has concentrated on the development of exact and suboptimal procedures for the generation of a baseline schedule assuming complete information and a deterministic environment. During execution, however, projects may be the subject of considerable uncertainty, which may lead to numerous schedule disruptions. Predictive-reactive scheduling refers to the process where a baseline schedule is developed prior to the start of the project and updated if necessary during project execution. It is the objective of this paper to review possible procedures for the generation of proactive (robust) schedules, which are as well as possible protected against schedule disruptions, and for the deployment of reactive scheduling procedures that may be used to revise or re-optimize the baseline schedule when unexpected events occur. We also offer a methodological framework that should allow project management to identify the proper scheduling methodology for different project scheduling environments. Finally, we survey the basics of Critical Chain scheduling and indicate in which environments it is useful.Framework; Information; Management; Processes; Project management; Project scheduling; Project scheduling under uncertainty; Stability; Robust scheduling; Quality; Scheduling; Stability; Uncertainty;
    corecore