7,970 research outputs found

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Step-wise development of resilient ambient campus scenarios

    Get PDF
    This paper puts forward a new approach to developing resilient ambient applications. In its core is a novel rigorous development method supported by a formal theory that enables us to produce a well-structured step-wise design and to ensure disciplined integration of error recovery measures into the resulting implementation. The development method, called AgentB, uses the idea of modelling database to support a coherent development of and reasoning about several model views, including the variable, event, role, agent and protocol views. This helps system developers in separating various modelling concerns and makes it easier for future tool developers to design a toolset supporting this development. Fault tolerance is systematically introduced during the development of various model views. The approach is demonstrated through the development of several application scenarios within an ambient campus case study conducted at Newcastle University (UK) as part of the FP6 RODIN project. © 2009 Springer Berlin Heidelberg

    On developing open mobile fault tolerant agent systems

    Get PDF
    The paper introduces the CAMA (Context-Aware Mobile Agents) framework intended for developing large-scale mobile applications using the agent paradigm. CAMA provides a powerful set of abstractions, a supporting middleware and an adaptation layer allowing developers to address the main characteristics of the mobile applications: openness, asynchronous and anonymous communication, fault tolerance, and device mobility. It ensures recursive system structuring using location, scope, agent, and role abstractions. CAMA supports system fault tolerance through exception handling and structured agent coordination within nested scopes. The applicability of the framework is demonstrated using an ambient lecture scenario - the first part of an ongoing work on a series of ambient campus applications. This scenario is developed starting from a thorough definition of the traceable requirements including the fault tolerance requirements. This is followed by the design phase at which the CAMA abstractions are applied. At the implementation phase, the CAMA middleware services are used through a provided API. This work is part of the FP6 IST RODIN project on Rigorous Open Development Environment for Complex Systems

    On using the CAMA framework for developing open mobile fault tolerant agent systems

    Get PDF
    The paper introduces the Cama (Context-Aware Mobile Agents) framework intended for developing large-scale mobile applications using the agent paradigm. Cama provides a powerful set of abstractions, a supporting middleware and an adaptation layer allowing developers to address the main characteristics of the mobile applications: openness, asynchronous and anonymous communication, fault tolerance, device mobility. It ensures recursive system structuring using location, scope, agent and role abstractions. Cama supports system fault tolerance through exception handling and structured agent coordination. The applicability of the framework is demonstrated using an ambient lecture scenario - the first part of an ongoing work on a series of ambient campus applications

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A framework for open distributed system design

    Get PDF
    Building open distributed systems is an even more challenging task than building distributed systems, as their components are loosely synchronised, can move, become disconnected, and their behaviour may depend on the changing context. The approach we are putting forward relies on using a combination of formal methods applied for rigorous development of the critical parts of the system and a set of design abstractions proposed specifically for the open context-aware applications and supported by a special middleware. Our middleware provides system structuring through the concepts of roles, agents, locations and scopes, making it easier for application developers to achieve fault tolerance. We demonstrate our approach using a case study, in which we show the whole process of developing an ambient campus application - an example of open distributed systems - including its formal specification, refinement, and implementation
    corecore