830 research outputs found

    A robust method for calculating interface curvature and normal vectors using an extracted local level set

    Get PDF
    The level-set method is a popular interface tracking method in two-phase flow simulations. An often-cited reason for using it is that the method naturally handles topological changes in the interface, e.g. merging drops, due to the implicit formulation. It is also said that the interface curvature and normal vectors are easily calculated. This last point is not, however, the case in the moments during a topological change, as several authors have already pointed out. Various methods have been employed to circumvent the problem. In this paper, we present a new such method which retains the implicit level-set representation of the surface and handles general interface configurations. It is demonstrated that the method extends easily to 3D. The method is validated on static interface configurations, and then applied to two-phase flow simulations where the method outperforms the standard method and the results agree well with experiments.Comment: 31 pages, 18 figure

    A projection method for multiphase flows

    Get PDF
    An Eulerian projection approach for incompressible variable-density two-phase flows is presented. The Navier-Stokes equations governing these flows are reformulated to take the form of the corresponding equations for the lighter phase with a constant density, which can be efficiently solved using standard numerical methods. The effect of the additional mass in the heavier phase is accounted for by a forcing term, which is determined from the solution of an artificial velocity field. This artificial field is subjected solely to inertial and gravity forces as well as the force coupling the flow field and the artificial field. The phase interface in this purely Eulerian approach is described using the level-set method. Results for two-dimensional simulations of the Rayleigh-Taylor instability are presented to validate the new method

    A Variational Level Set Approach for Surface Area Minimization of Triply Periodic Surfaces

    Full text link
    In this paper, we study triply periodic surfaces with minimal surface area under a constraint in the volume fraction of the regions (phases) that the surface separates. Using a variational level set method formulation, we present a theoretical characterization of and a numerical algorithm for computing these surfaces. We use our theoretical and computational formulation to study the optimality of the Schwartz P, Schwartz D, and Schoen G surfaces when the volume fractions of the two phases are equal and explore the properties of optimal structures when the volume fractions of the two phases not equal. Due to the computational cost of the fully, three-dimensional shape optimization problem, we implement our numerical simulations using a parallel level set method software package.Comment: 28 pages, 16 figures, 3 table

    Vessel Axis Tracking Using Topology Constrained Surface Evolution

    Get PDF
    An approach to three-dimensional vessel axis tracking based on surface evolution is presented. The main idea is to guide the evolution of the surface by analyzing its skeleton topology during evolution, and imposing shape constraints on the topology. For example, the intermediate topology can be processed such that it represents a single vessel segment, a bifurcation, or a more complex vascular topology. The evolving surface is then re-initialized with the newly found topology. Re-initialization is a crucial step since it creates probing behavior of the evolving front, encourages the segmentation process to extract the vascular structure of interest and reduces the risk on leaking of the curve into the background. The method was evaluated in two computed tomography angiography applications: (i) extracting the internal carotid arteries including the region in which they traverse through the skull base, which is challenging due to the proximity of bone structures and overlap in intensity values, and (ii) extracting the carotid bifurcations including many cases in which they are severely stenosed and contain calcifications. The vessel axis was found in 90% (18/20 internal carotids in ten patients) and 70% (14/20 carotid bifurcations in a different set of ten patients) of the cases

    A Finite-Volume Formulation for Fully Compressible Premixed Combustion using the Level Set Approach

    Get PDF
    The level set approach is used for fully compressible simulations of premixed combustion. The motivation of the present work is to numerically simulate thermo-acoustic combustion instabilities. These instabilities are excited by the interaction of heat release and pressure fluctuations, which can numerically only be accurately accounted for in fully compressible simulations. A major challenge is the discretization and the inclusion of the heat release due to combustion at the flame front. To this end, a finite-volume formulation, which uses the ideas of the ghost-fluid method [Fedkiw et al. J. Comp. Phys. 154, 393-427 (1999)], is developed  based on a low-dissipation scheme which has been successfully used for large-eddy simulations of non-reacting flows

    A variational volume-of-fluid approach for front propagation

    Full text link
    A variational volume-of-fluid (VVOF) methodology is devised for evolving interfaces under curvature-dependent speed. The interface is reconstructed geometrically using the analytic relations of Scardovelli and Zaleski [1] and the advection of the volume fraction is performed using the algorithm of Weymouth and Yue (WY) [2] with a technique to incorporate a volume conservation constraint. The proposed approach has the advantage of simple implementation and straightforward extension to more complex systems. Canonical curves and surfaces traditionally investigated by the level set (LS) method are tested with the VVOF approach and results are compared with existing work in LS

    Multi-objective topology optimization of heat transfer surface using level-set method and adaptive mesh refinement in OpenFOAM

    Full text link
    The present study proposes a new efficient and robust algorithm for multi-objectives topology optimization of heat transfer surfaces to achieve heat transfer enhancement with a less pressure drop penalty based on a continuous adjoint approach. It is achieved with a customized OpenFOAM solver, which is based on a volume penalization method for solving a steady and laminar flow around iso-thermal solid objects with arbitrary geometries. The fluid-solid interface is captured by a level-set function combined with a newly proposed robust reinitialization scheme ensuring that the interface diffusion is always kept within a single local grid spacing. Adaptive mesh refinement is applied in near-wall regions automatically detected by the level-set function to keep high resolution locally, thereby reduces the overall computational cost for the forward and adjoint analyses. The developed solver is first validated in a drag reduction problem of a flow around a two-dimensional cylinder at the Reynolds numbers of 10 and 40 by comparing reference data. Then, the proposed scheme is extended to heat transfer problems in a two-dimensional flow at the Prandtl number of 0.7 and 6.9. Finally, three-dimensional topology optimization for multi-objective problems is considered for cost functionals with different weights for the total drag and heat transfer. Among various solutions obtained on the Pareto front, 4.0% of heat transfer enhancement with 12.6% drag reduction is achieved at the Reynolds number of 10 and the Prandtl number of 6.9. Moreover, the optimization of a staggered pin-fin array demonstrates that the optimal shapes and arrangement of the fins strongly depend on the number of rows from the inlet. Specifically, the pin-fins in the first and third rows extended in the upstream direction further enhance heat transfer, while the fins in the second row vanish to reduce pressure loss.Comment: Submitted to International Journal of Heat and Mass Transfer on Aug. 3
    • …
    corecore