32 research outputs found

    Kernel methods for large-scale graph-based heterogeneous biological data integration

    Get PDF
    The last decade has experienced a rapid growth in volume and diversity of biological data, thanks to the development of high-throughput technologies related to web services and embeded systems. It is common that information related to a given biological phenomenon is encoded in multiple data sources. On the one hand, this provides a great opportunity for biologists and data scientists to have more unified views about phenomenon of interest. On the other hand, this presents challenges for scientists to find optimal ways in order to wisely extract knowledge from such huge amount of data which normally cannot be done without the help of automated learning systems. Therefore, there is a high need of developing smart learning systems, whose input as set of multiple sources, to support experts to form and assess hypotheses in biology and medicine. In these systems, the problem of combining multiple data sources or data integration needs to be efficiently solved to achieve high performances. Biological data can naturally be represented as graphs. By taking graphs for data representation, we can take advantages from the access to a solid and principled mathematical framework for graphs, and the problem of data integration becomes graph-based integration. In recent years, the machine learning community has witnessed the tremendous growth in the development of kernel-based learning algorithms. Kernel methods whose kernel functions allow to separate between the representation of the data and the general learning algorithm. Interestingly, kernel representation can be applied to any type of data, including trees, graphs, vectors, etc. For this reason, kernel methods are a reasonable and logical choice for graph-based inference systems. However, there is a number of challenges for graph-based systems using kernel methods need to be effectively solved, including definition of node similarity measure, graph sparsity, scalability, efficiency, complementary property exploitation, integration methods. The contributions of the thesis aim at investigating to propose solutions that overcome the challenges faced when constructing graph-based data integration learning systems. The first contribution is the definition of a decompositional graph node kernel, named Conjunctive Disjunctive Node Kernel (CDNK), which intends to measure the similarities between nodes of graphs. Differently of existing graph node kernels that only exploit the topologies of graphs, the proposed kernel also utilizes the available information on the graph nodes. In CDNK, first, the graph is transformed into a set of linked connected components in which we distinguish between “conjunctive” links whose endpoints are in the same connected components and “disjunctive” links that connect nodes located in different connected components. Then the similarity between any couple of nodes is measured by employing a particular graph kernel on two neighborhood subgraphs rooted as each node. Next, it integrates the side information by applying convolution of the discrete information with the real valued vectors associated to graph nodes. Empirical evaluation shows that the kernel presents better performance compared to state-of-the-art graph node kernels. The second contribution aims at dealing with the graph sparsity problem. When working with sparse graphs, i.e graphs with a high number of missing links, the available information is not efficient to learn effectively. An idea to overcome this problem is to use link enrichment to enrich information for graphs. However, the performance of a link enrichment strongly depends on the adopted link prediction method. Therefore, we propose an effective link prediction method (JNSL). In this method, first, each link is represented as a joint neighborhood subgraphs. Then link prediction is considered as a binary classification. We empirically show that the proposed link prediction outperforms various other methods. Besides, we also present a method to boost the performance of diffusion-based kernels, which are most popularly used, by coupling kernel methods with link enrichment. Experimental results prove that the performances of diffusion-based graph node kernels are considerably improved by using link enrichment. The last contribution proposes a general kernel-based framework for graph integration that we name Graph-one. Graph-one is designed to overcome the challenges when handling with graph integration. In particular, it is a scalable and efficient framework. Besides, it is able to deal with unbanlanced settings where the number of positive and negative instances are much different. Numerous variations of Graph-one are evaluated in disease gene prioritization context. The results from experiments illustrate the power of the proposed framework. Precisely, Graph-one shows better performance than various methods. Moreover, Graph-one with data integration gets higher results than it with any single data source. It presents the effectiveness of Graph-one in exploiting the complementary property of graph integration

    Hierarchical ensemble methods for protein function prediction

    Get PDF
    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware \u201cflat\u201d prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a \u201cconsensus\u201d ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research

    Analysing functional genomics data using novel ensemble, consensus and data fusion techniques

    Get PDF
    Motivation: A rapid technological development in the biosciences and in computer science in the last decade has enabled the analysis of high-dimensional biological datasets on standard desktop computers. However, in spite of these technical advances, common properties of the new high-throughput experimental data, like small sample sizes in relation to the number of features, high noise levels and outliers, also pose novel challenges. Ensemble and consensus machine learning techniques and data integration methods can alleviate these issues, but often provide overly complex models which lack generalization capability and interpretability. The goal of this thesis was therefore to develop new approaches to combine algorithms and large-scale biological datasets, including novel approaches to integrate analysis types from different domains (e.g. statistics, topological network analysis, machine learning and text mining), to exploit their synergies in a manner that provides compact and interpretable models for inferring new biological knowledge. Main results: The main contributions of the doctoral project are new ensemble, consensus and cross-domain bioinformatics algorithms, and new analysis pipelines combining these techniques within a general framework. This framework is designed to enable the integrative analysis of both large- scale gene and protein expression data (including the tools ArrayMining, Top-scoring pathway pairs and RNAnalyze) and general gene and protein sets (including the tools TopoGSA , EnrichNet and PathExpand), by combining algorithms for different statistical learning tasks (feature selection, classification and clustering) in a modular fashion. Ensemble and consensus analysis techniques employed within the modules are redesigned such that the compactness and interpretability of the resulting models is optimized in addition to the predictive accuracy and robustness. The framework was applied to real-word biomedical problems, with a focus on cancer biology, providing the following main results: (1) The identification of a novel tumour marker gene in collaboration with the Nottingham Queens Medical Centre, facilitating the distinction between two clinically important breast cancer subtypes (framework tool: ArrayMining) (2) The prediction of novel candidate disease genes for Alzheimer’s disease and pancreatic cancer using an integrative analysis of cellular pathway definitions and protein interaction data (framework tool: PathExpand, collaboration with the Spanish National Cancer Centre) (3) The prioritization of associations between disease-related processes and other cellular pathways using a new rule-based classification method integrating gene expression data and pathway definitions (framework tool: Top-scoring pathway pairs) (4) The discovery of topological similarities between differentially expressed genes in cancers and cellular pathway definitions mapped to a molecular interaction network (framework tool: TopoGSA, collaboration with the Spanish National Cancer Centre) In summary, the framework combines the synergies of multiple cross-domain analysis techniques within a single easy-to-use software and has provided new biological insights in a wide variety of practical settings

    Analysing functional genomics data using novel ensemble, consensus and data fusion techniques

    Get PDF
    Motivation: A rapid technological development in the biosciences and in computer science in the last decade has enabled the analysis of high-dimensional biological datasets on standard desktop computers. However, in spite of these technical advances, common properties of the new high-throughput experimental data, like small sample sizes in relation to the number of features, high noise levels and outliers, also pose novel challenges. Ensemble and consensus machine learning techniques and data integration methods can alleviate these issues, but often provide overly complex models which lack generalization capability and interpretability. The goal of this thesis was therefore to develop new approaches to combine algorithms and large-scale biological datasets, including novel approaches to integrate analysis types from different domains (e.g. statistics, topological network analysis, machine learning and text mining), to exploit their synergies in a manner that provides compact and interpretable models for inferring new biological knowledge. Main results: The main contributions of the doctoral project are new ensemble, consensus and cross-domain bioinformatics algorithms, and new analysis pipelines combining these techniques within a general framework. This framework is designed to enable the integrative analysis of both large- scale gene and protein expression data (including the tools ArrayMining, Top-scoring pathway pairs and RNAnalyze) and general gene and protein sets (including the tools TopoGSA , EnrichNet and PathExpand), by combining algorithms for different statistical learning tasks (feature selection, classification and clustering) in a modular fashion. Ensemble and consensus analysis techniques employed within the modules are redesigned such that the compactness and interpretability of the resulting models is optimized in addition to the predictive accuracy and robustness. The framework was applied to real-word biomedical problems, with a focus on cancer biology, providing the following main results: (1) The identification of a novel tumour marker gene in collaboration with the Nottingham Queens Medical Centre, facilitating the distinction between two clinically important breast cancer subtypes (framework tool: ArrayMining) (2) The prediction of novel candidate disease genes for Alzheimer’s disease and pancreatic cancer using an integrative analysis of cellular pathway definitions and protein interaction data (framework tool: PathExpand, collaboration with the Spanish National Cancer Centre) (3) The prioritization of associations between disease-related processes and other cellular pathways using a new rule-based classification method integrating gene expression data and pathway definitions (framework tool: Top-scoring pathway pairs) (4) The discovery of topological similarities between differentially expressed genes in cancers and cellular pathway definitions mapped to a molecular interaction network (framework tool: TopoGSA, collaboration with the Spanish National Cancer Centre) In summary, the framework combines the synergies of multiple cross-domain analysis techniques within a single easy-to-use software and has provided new biological insights in a wide variety of practical settings

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Acta Polytechnica Hungarica 2019

    Get PDF
    corecore