40 research outputs found

    Configurations of lines and models of Lie algebras

    Full text link
    The automorphism groups of the 27 lines on the smooth cubic surface or the 28 bitangents to the general quartic plane curve are well-known to be closely related to the Weyl groups of E_6E\_6 and E_7E\_7. We show how classical subconfigurations of lines, such as double-sixes, triple systems or Steiner sets, are easily constructed from certain models of the exceptional Lie algebras. For e_7{\mathfrak e}\_7 and e_8{\mathfrak e}\_8 we are lead to beautiful models graded over the octonions, which display these algebras as plane projective geometries of subalgebras. We also interpret the group of the bitangents as a group of transformations of the triangles in the Fano plane, and show how this allows to realize the isomorphism PSL(3,F_2)PSL(2,F_7)PSL(3,F\_2)\simeq PSL(2,F\_7) in terms of harmonic cubes.Comment: 31 page

    Quartic Curves and Their Bitangents

    Get PDF
    A smooth quartic curve in the complex projective plane has 36 inequivalent representations as a symmetric determinant of linear forms and 63 representations as a sum of three squares. These correspond to Cayley octads and Steiner complexes respectively. We present exact algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov quartics as spectrahedra and positive quartics as Gram matrices. We explore the geometry of Gram spectrahedra and we find equations for the variety of Cayley octads. Interwoven is an exposition of much of the 19th century theory of plane quartics.Comment: 26 pages, 3 figures, added references, fixed theorems 4.3 and 7.8, other minor change

    Maximally inflected real rational curves

    Get PDF
    We introduce and begin the topological study of real rational plane curves, all of whose inflection points are real. The existence of such curves is a corollary of results in the real Schubert calculus, and their study has consequences for the important Shapiro and Shapiro conjecture in the real Schubert calculus. We establish restrictions on the number of real nodes of such curves and construct curves realizing the extreme numbers of real nodes. These constructions imply the existence of real solutions to some problems in the Schubert calculus. We conclude with a discussion of maximally inflected curves of low degree.Comment: Revised with minor corrections. 37 pages with 106 .eps figures. Over 250 additional pictures on accompanying web page (See http://www.math.umass.edu/~sottile/pages/inflected/index.html

    On the containment problem

    Get PDF
    The purpose of this note is to provide an overview of the containment problem for symbolic and ordinary powers of homogeneous ideals, related conjectures and examples. We focus here on ideals with zero dimensional support. This is an area of ongoing active research. We conclude the note with a list of potential promising paths of further research.Comment: 13 pages, 1 figur

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Algebraic Methods for Dynamical Systems and Optimisation

    Get PDF
    This thesis develops various aspects of Algebraic Geometry and its applications in different fields of science. In Chapter 2 we characterise the feasible set of an optimisation problem relevant in chemical process engineering. We consider the polynomial dynamical system associated with mass-action kinetics of a chemical reaction network. Given an initial point, the attainable region of that point is the smallest convex and forward closed set that contains the trajectory. We show that this region is a spectrahedral shadow for a class of linear dynamical systems. As a step towards representing attainable regions we develop algorithms to compute the convex hulls of trajectories. We present an implementation of this algorithm which works in dimensions 2,3 and 4. These algorithms are based on a theory that approximates the boundary of the convex hull of curves by a family of polytopes. If the convex hull is represented as the output of our algorithms we can also check whether it is forward closed or not. Chapter 3 has two parts. In this first part, we do a case study of planar curves of degree 6. It is known that there are 64 rigid isotopy types of these curves. We construct explicit polynomial representatives with integer coefficients for each of these types using different techniques in the literature. We present an algorithm, and its implementation in software Mathematica, for determining the isotopy type of a given sextic. Using the representatives various sextics for each type were sampled. On those samples we explored the number of real bitangents, inflection points and eigenvectors. We also computed the tensor rank of the representatives by numerical methods. We show that the locus of all real lines that do not meet a given sextic is a union of up to 46 convex regions that is bounded by its dual curve. In the second part of Chapter 3 we consider a problem arising in molecular biology. In a system where molecules bind to a target molecule with multiple binding sites, cooperativity measures how the already bound molecules affect the chances of other molecules binding. We address an optimisation problem that arises while quantifying cooperativity. We compute cooperativity for the real data of molecules binding to hemoglobin and its variants. In Chapter 4, given a variety X in n-dimensional projective space we look at its image under the map that takes each point in X to its coordinate-wise r-th power. We compute the degree of the image. We also study their defining equations, particularly for hypersurfaces and linear spaces. We exhibit the set-theoretic equations of the coordinate-wise square of a linear space L of dimension k embedded in a high dimensional ambient space. We also establish a link between coordinate-wise squares of linear spaces and the study of real symmetric matrices with degenerate eigenspectrum

    Two-cover descent on plane quartics with rational bitangents

    Full text link
    We implement two-cover descent for plane quartics over Q with all 28 bitangents rational and show that on a significant collection of test cases, it resolves the existence of rational points. We also review a classical description of the relevant moduli space and use it to generate examples. We observe that local obstructions are quite rare for such curves, and only seem to occur in practice at primes of good reduction. In particular, having good reduction at 11 implies having no rational points. We also gather numerical data on two-Selmer ranks of Jacobians of these curves, which suggests that these often have non-trivial Tate-Shafarevich groups. We implement two-cover descent for plane quartics over Q with all 28 bitangents rational and show that on a significant collection of test cases, it resolves the existence of rational points. We also review a classical description of the relevant moduli space and use it to generate examples. We observe that local obstructions are quite rare for such curves and only seem to occur in practice at primes of good reduction. In particular, having good reduction at 11 implies having no rational points. We also gather numerical data on two-Selmer ranks of Jacobians of these curves, providing evidence these behave differently from those of general abelian varieties due to the frequent presence of an everywhere locally trivial torsor.Comment: 15 pages; Some minor improvements to algorithm and rank data analysi

    Klein's arrangements of lines and conics

    Full text link
    In this paper we construct several arrangements of lines and/or conics that are derived from the geometry of the Klein arrangement of 2121 lines in the complex projective plane.Comment: 19 pages, 11 figure
    corecore