389 research outputs found

    Concatenated structure and construction of certain code families

    Get PDF
    In this thesis, we consider concatenated codes and their generalizations as the main tool for two different purposes. Our first aim is to extend the concatenated structure of quasi-cyclic codes to its two generalizations: generalized quasi-cyclic codes and quasi-abelian codes. Concatenated structure have consequences such as a general minimum distance bound. Hence, we obtain minimum distance bounds, which are analogous to Jensen's bound for quasi-cyclic codes, for generalized quasicyclic and quasi-abelian codes. We also prove that linear complementary dual quasi-abelian codes are asymptotically good, using the concatenated structure. Moreover, for generalized quasi-cyclic and quasi-abelian codes, we prove, as in the quasi-cyclic codes, that their concatenated decomposition and the Chinese Remainder decomposition are equivalent. The second purpose of the thesis is to construct a linear complementary pair of codes using concatenations. This class of codes have been of interest recently due to their applications in cryptography. This extends the recent result of Carlet et al. on the concatenated construction of linear complementary dual codes

    Non-binary Unitary Error Bases and Quantum Codes

    Get PDF
    Error operator bases for systems of any dimension are defined and natural generalizations of the bit/sign flip error basis for qubits are given. These bases allow generalizing the construction of quantum codes based on eigenspaces of Abelian groups. As a consequence, quantum codes can be constructed from linear codes over \ints_n for any nn. The generalization of the punctured code construction leads to many codes which permit transversal (i.e. fault tolerant) implementations of certain operations compatible with the error basis.Comment: 10 pages, preliminary repor

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    On the concatenated structures of a [49, 18, 12] binary abelian code

    Get PDF
    AbstractWe here introduce a new formalism for describing concatenated codes. Using this formalism, we show how any generalized concatenated code can be viewed as a first order concatenated code. Finally, we give an illustrative example: using Jensen's result (1985) which shows that any abelian code has a generalized concatenated structure, we first give the representation of the [49, 18, 12] abelian code introduced by Camion (1971) as a second order concatenated code; then using our description, we show that this code is also equal to the first order concatenation of two linear cyclic codes

    Quasi-Cyclic Complementary Dual Code

    Full text link
    LCD codes are linear codes that intersect with their dual trivially. Quasi cyclic codes that are LCD are characterized and studied by using their concatenated structure. Some asymptotic results are derived. Hermitian LCD codes are introduced to that end and their cyclic subclass is characterized. Constructions of QCCD codes from codes over larger alphabets are given

    The q-ary image of some qm-ary cyclic codes: permutation group and soft-decision decoding

    Get PDF
    Using a particular construction of generator matrices of the q-ary image of qm-ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding of some expanded Reed–Solomon (RS) codes to improve the performance of generalized minimum-distance decoding
    corecore