2,744 research outputs found

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward
    corecore