1,088 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    On Computing the Average Distance for Some Chordal-Like Graphs

    Get PDF
    The Wiener index of a graph G is the sum of all its distances. Up to renormalization, it is also the average distance in G. The problem of computing this parameter has different applications in chemistry and networks. We here study when it can be done in truly subquadratic time (in the size n+m of the input) on n-vertex m-edge graphs. Our main result is a complete answer to this question, assuming the Strong Exponential-Time Hypothesis (SETH), for all the hereditary subclasses of chordal graphs. Interestingly, the exact same result also holds for the diameter problem. The case of non-hereditary chordal subclasses happens to be more challenging. For the chordal Helly graphs we propose an intricate O?(m^{3/2})-time algorithm for computing the Wiener index, where m denotes the number of edges. We complete our results with the first known linear-time algorithm for this problem on the dually chordal graphs. The former algorithm also computes the median set

    Medians in median graphs and their cube complexes in linear time

    Full text link
    The median of a set of vertices PP of a graph GG is the set of all vertices xx of GG minimizing the sum of distances from xx to all vertices of PP. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the ℓ1\ell_1-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure, due to their bijections with CAT(0) cube complexes and domains of event structures. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ\Theta-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of GG satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of GG are also adjacent. Using the fast computation of the Θ\Theta-classes, we also compute the Wiener index (total distance) of GG in linear time and the distance matrix in optimal quadratic time
    • …
    corecore