443 research outputs found

    An approximate factorisation of three bivariate Bernstein basis polynomials defined in a triangular domain

    Get PDF
    This paper considers an approximate factorisation of three bivariate Bernstein basis polynomials that are defined in a triangular domain. This problem is important for the computation of the intersection points of curves in computer-aided design systems, and it reduces to the determination of an approximate greatest common divisor (AGCD) d (y) of the polynomials. The Sylvester matrix and its subresultant matrices of these three polynomials are formed and it is shown that there are four forms of these matrices. The most difficult part of the computation is the determination of the degree of d (y) because it reduces to the determination of the rank loss of these matrices. This computation is made harder by the presence of trinomial terms in the Bernstein basis functions because they cause the entries of the matrices to span many orders of magnitude. The adverse numerical effects of this wide range of magnitudes of the entries of the four forms of the Sylvester matrix and its subresultant matrices are mitigated by processing the polynomials before these matrices are formed. It is shown that significantly improved results are obtained if the polynomials are processed before computations are performed on their Sylvester matrices and subresultant matrices

    The computation of multiple roots of a Bernstein basis polynomial

    Get PDF
    This paper describes the algorithms of Musser and Gauss for the computation of multiple roots of a theoretically exact Bernstein basis polynomial ˆ 5 f(y) when the coefficients of its given form f(y) are corrupted by noise. The exact roots of f(y) can therefore be assumed to be simple, and thus the problem reduces to the calculation of multiple roots of a polynomial f˜(y) that is near f(y), such that the backward error is small. The algorithms require many greatest common divisor (GCD) computations and polynomial deconvolutions, both of which are implemented by a structure-preserving matrix method. The motivation of these algorithms arises from the unstructured and structured condition numbers of a multiple root of a polynomial. These condition numbers have an elegant interpretation in terms of the pejorative manifold of ˆ 12 f(y), which allows the geometric significance of the GCD computations and polynomial deconvolutions to be considered. A variant of the Sylvester resultant matrix is used for the GCD computations because it yields better results than the standard form of this matrix, and the polynomial deconvolutions can be computed in several different ways, sequentially or simultaneously, and with the inclusion or omission of the preservation of the structure of the coefficient matrix. It is shown that Gauss’ algorithm yields better results than Musser’s algorithm, and the reason for these superior results is explained

    The computation of the degree of an approximate greatest common divisor of two Bernstein polynomials

    Get PDF
    This paper considers the computation of the degree t of an approximate greatest common divisor d(y) of two Bernstein polynomials f(y) and g(y), which are of degrees m and n respectively. The value of t is computed from the QR decomposition of the Sylvester resultant matrix S(f, g) and its subresultant matrices Sk(f, g), k = 2, . . . , min(m, n), where S1(f, g) = S(f, g). It is shown that the computation of t is significantly more complicated than its equivalent for two power basis polynomials because (a) Sk(f, g) can be written in several forms that differ in the complexity of the computation of their entries, (b) different forms of Sk(f, g) may yield different values of t, and (c) the binomial terms in the entries of Sk(f, g) may cause the ratio of its entry of maximum magnitude to its entry of minimum magnitude to be large, which may lead to numerical problems. It is shown that the QR decomposition and singular value decomposition (SVD) of the Sylvester matrix and its subresultant matrices yield better results than the SVD of the B´ezout matrix, and that f(y) and g(y) must be processed before computations are performed on these resultant and subresultant matrices in order to obtain good results

    The geometry of efficient arithmetic on elliptic curves

    Full text link
    The arithmetic of elliptic curves, namely polynomial addition and scalar multiplication, can be described in terms of global sections of line bundles on EĂ—EE\times E and EE, respectively, with respect to a given projective embedding of EE in Pr\mathbb{P}^r. By means of a study of the finite dimensional vector spaces of global sections, we reduce the problem of constructing and finding efficiently computable polynomial maps defining the addition morphism or isogenies to linear algebra. We demonstrate the effectiveness of the method by improving the best known complexity for doubling and tripling, by considering families of elliptic curves admiting a 22-torsion or 33-torsion point

    On meromorphic functions defined by a differential system of order 1, II

    Get PDF
    Given a nonzero germ h of holomorphic function on (C^n,0), we study the condition: ``the ideal Ann\_D 1/h is generated by operators of order 1''. When h defines a generic arrangement of hypersurfaces with an isolated singularity, we show that it is verified if and only if h is weighted homogeneous and -1 is the only integral root of its Bernstein-Sato polynomial. When h is a product, we give a process to test this last condition. Finally, we study some other related conditions.Comment: 28 pages, 1 diagra

    The Newton Polytope of the Implicit Equation

    Full text link
    We apply tropical geometry to study the image of a map defined by Laurent polynomials with generic coefficients. If this image is a hypersurface then our approach gives a construction of its Newton polytope.Comment: 18 pages, 3 figure
    • …
    corecore