2,133 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    A framework for quantitative analysis of user-generated spatial data

    Get PDF
    This paper proposes a new framework for automated analysis of game-play metrics for aiding game designers in finding out the critical aspects of the game caused by factors like design modications, change in playing style, etc. The core of the algorithm measures similarity between spatial distribution of user generated in-game events and automatically ranks them in order of importance. The feasibility of the method is demonstrated on a data set collected from a modern, multiplayer First Person Shooter, together with application examples of its use. The proposed framework can be used to accompany traditional testing tools and make the game design process more efficient

    Using basic image features for texture classification

    Get PDF
    Representing texture images statistically as histograms over a discrete vocabulary of local features has proven widely effective for texture classification tasks. Images are described locally by vectors of, for example, responses to some filter bank; and a visual vocabulary is defined as a partition of this descriptor-response space, typically based on clustering. In this paper, we investigate the performance of an approach which represents textures as histograms over a visual vocabulary which is defined geometrically, based on the Basic Image Features of Griffin and Lillholm (Proc. SPIE 6492(09):1-11, 2007), rather than by clustering. BIFs provide a natural mathematical quantisation of a filter-response space into qualitatively distinct types of local image structure. We also extend our approach to deal with intra-class variations in scale. Our algorithm is simple: there is no need for a pre-training step to learn a visual dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different datasets. We have tested our implementation on three popular and challenging texture datasets and find that it produces consistently good classification results on each, including what we believe to be the best reported for the KTH-TIPS and equal best reported for the UIUCTex databases

    Localizing Region-Based Active Contours

    Get PDF
    Ā©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.2004611In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models

    A Parallel Histogram-based Particle Filter for Object Tracking on SIMD-based Smart Cameras

    Get PDF
    We present a parallel implementation of a histogram-based particle filter for object tracking on smart cameras based on SIMD processors. We specifically focus on parallel computation of the particle weights and parallel construction of the feature histograms since these are the major bottlenecks in standard implementations of histogram-based particle filters. The proposed algorithm can be applied with any histogram-based feature setsā€”we show in detail how the parallel particle filter can employ simple color histograms as well as more complex histograms of oriented gradients (HOG). The algorithm was successfully implemented on an SIMD processor and performs robust object tracking at up to 30 frames per secondā€”a performance difficult to achieve even on a modern desktop computer

    Detecting Similarities in Virtual Machine Behavior for Cloud Monitoring using Smoothed Histograms

    Get PDF
    The growing size and complexity of cloud systems determine scalability issues for resource monitoring and management. While most existing solutions con- sider each Virtual Machine (VM) as a black box with independent characteristics, we embrace a new perspective where VMs with similar behaviors in terms of resource usage are clustered together. We argue that this new approach has the potential to address scalability issues in cloud monitoring and management. In this paper, we propose a technique to cluster VMs starting from the usage of multiple resources, assuming no knowledge of the services executed on them. This innovative technique models VMs behavior exploiting the probability histogram of their resources usage, and performs smoothing-based noise reduction and selection of the most relevant information to consider for the clustering process. Through extensive evaluation, we show that our proposal achieves high and stable performance in terms of automatic VM clustering, and can reduce the monitoring requirements of cloud systems

    Metric Learning for Generalizing Spatial Relations to New Objects

    Full text link
    Human-centered environments are rich with a wide variety of spatial relations between everyday objects. For autonomous robots to operate effectively in such environments, they should be able to reason about these relations and generalize them to objects with different shapes and sizes. For example, having learned to place a toy inside a basket, a robot should be able to generalize this concept using a spoon and a cup. This requires a robot to have the flexibility to learn arbitrary relations in a lifelong manner, making it challenging for an expert to pre-program it with sufficient knowledge to do so beforehand. In this paper, we address the problem of learning spatial relations by introducing a novel method from the perspective of distance metric learning. Our approach enables a robot to reason about the similarity between pairwise spatial relations, thereby enabling it to use its previous knowledge when presented with a new relation to imitate. We show how this makes it possible to learn arbitrary spatial relations from non-expert users using a small number of examples and in an interactive manner. Our extensive evaluation with real-world data demonstrates the effectiveness of our method in reasoning about a continuous spectrum of spatial relations and generalizing them to new objects.Comment: Accepted at the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. The new Freiburg Spatial Relations Dataset and a demo video of our approach running on the PR-2 robot are available at our project website: http://spatialrelations.cs.uni-freiburg.d

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866
    • ā€¦
    corecore