9,599 research outputs found

    On equiangular lines in 17 dimensions and the characteristic polynomial of a Seidel matrix

    Full text link
    For ee a positive integer, we find restrictions modulo 2e2^e on the coefficients of the characteristic polynomial χS(x)\chi_S(x) of a Seidel matrix SS. We show that, for a Seidel matrix of order nn even (resp. odd), there are at most 2(e22)2^{\binom{e-2}{2}} (resp. 2(e22)+12^{\binom{e-2}{2}+1}) possibilities for the congruence class of χS(x)\chi_S(x) modulo 2eZ[x]2^e\mathbb Z[x]. As an application of these results, we obtain an improvement to the upper bound for the number of equiangular lines in R17\mathbb R^{17}, that is, we reduce the known upper bound from 5050 to 4949.Comment: 21 pages, fixed typo in Lemma 2.

    Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations

    Full text link
    In the paper we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. The centralizer is either a direct product of finite cyclic groups, a continuous group of rank 1, or a product, not necessarily direct, of a continuous group of rank 1 with a finite cyclic group. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given.Comment: 27 page

    Algorithmic Aspects of a General Modular Decomposition Theory

    Get PDF
    A new general decomposition theory inspired from modular graph decomposition is presented. This helps unifying modular decomposition on different structures, including (but not restricted to) graphs. Moreover, even in the case of graphs, the terminology ``module'' not only captures the classical graph modules but also allows to handle 2-connected components, star-cutsets, and other vertex subsets. The main result is that most of the nice algorithmic tools developed for modular decomposition of graphs still apply efficiently on our generalisation of modules. Besides, when an essential axiom is satisfied, almost all the important properties can be retrieved. For this case, an algorithm given by Ehrenfeucht, Gabow, McConnell and Sullivan 1994 is generalised and yields a very efficient solution to the associated decomposition problem

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results

    User-friendly Support for Common Concepts in a Lightweight Verifier

    Full text link
    Machine verification of formal arguments can only increase our confidence in the correctness of those arguments, but the costs of employing machine verification still outweigh the benefits for some common kinds of formal reasoning activities. As a result, usability is becoming increasingly important in the design of formal verification tools. We describe the "aartifact" lightweight verification system, designed for processing formal arguments involving basic, ubiquitous mathematical concepts. The system is a prototype for investigating potential techniques for improving the usability of formal verification systems. It leverages techniques drawn both from existing work and from our own efforts. In addition to a parser for a familiar concrete syntax and a mechanism for automated syntax lookup, the system integrates (1) a basic logical inference algorithm, (2) a database of propositions governing common mathematical concepts, and (3) a data structure that computes congruence closures of expressions involving relations found in this database. Together, these components allow the system to better accommodate the expectations of users interested in verifying formal arguments involving algebraic and logical manipulations of numbers, sets, vectors, and related operators and predicates. We demonstrate the reasonable performance of this system on typical formal arguments and briefly discuss how the system's design contributed to its usability in two case studies
    corecore