396 research outputs found

    Probabilistic justification logic

    Get PDF
    We present a probabilistic justification logic, PPJ⁠, as a framework for uncertain reasoning about rational belief, degrees of belief and justifications. We establish soundness and strong completeness for PPJ with respect to the class of so-called measurable Kripke-like models and show that the satisfiability problem is decidable. We discuss how PPJ provides insight into the well-known lottery paradox

    Uncertain Reasoning in Justification Logic

    Get PDF
    This thesis studies the combination of two well known formal systems for knowledge representation: probabilistic logic and justification logic. Our aim is to design a formal framework that allows the analysis of epistemic situations with incomplete information. In order to achieve this we introduce two probabilistic justification logics, which are defined by adding probability operators to the minimal justification logic J. We prove soundness and completeness theorems for our logics and establish decidability procedures. Both our logics rely on an infinitary rule so that strong completeness can be achieved. One of the most interesting mathematical results for our logics is the fact that adding only one iteration of the probability operator to the justification logic J does not increase the computational complexity of the logic

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Multi-Player Games with LDL Goals over Finite Traces

    Full text link
    Linear Dynamic Logic on finite traces LDLf is a powerful logic for reasoning about the behaviour of concurrent and multi-agent systems. In this paper, we investigate techniques for both the characterisation and verification of equilibria in multi-player games with goals/objectives expressed using logics based on LDLf. This study builds upon a generalisation of Boolean games, a logic-based game model of multi-agent systems where players have goals succinctly represented in a logical way. Because LDLf goals are considered, in the settings we study -- Reactive Modules games and iterated Boolean games with goals over finite traces -- players' goals can be defined to be regular properties while achieved in a finite, but arbitrarily large, trace. In particular, using alternating automata, the paper investigates automata-theoretic approaches to the characterisation and verification of (pure strategy Nash) equilibria, shows that the set of Nash equilibria in multi-player games with LDLf objectives is regular, and provides complexity results for the associated automata constructions

    Seeing, Knowing, doing : case studies in modal logic

    Get PDF
    Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les personnages virtuels perçoivent un environnement, en tirent des connaissances puis effectuent des actions selon leur besoin. De même en robotique, un robot perçoit son environnement à l'aide de capteurs/caméras, établit une base de connaissances et effectuent des mouvements etc. La description des comportements de ces agents virtuels et leurs raisonnements peut s'effectuer à l'aide d'un langage logique. Dans cette thèse, on se propose de modéliser les trois aspects "voir", "savoir" et "faire" et leurs interactions à l'aide de la logique modale. Dans une première partie, on modélise des agents dans un espace géométrique puis on définit une relation épistémique qui tient compte des positions et du regard des agents. Dans une seconde partie, on revisite la logique des actions "STIT" (see-to-it-that ou "faire en sorte que") qui permet de faire la différence entre les principes "de re" et "de dicto", contrairement à d'autres logiques modales des actions. Dans une troisième partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une variante de la logique "STIT" ainsi que des émotions contre-factuelles comme le regret. Tout au long de cette thèse, on s'efforcera de s'intéresser aux aspects logiques comme les complétudes des axiomatisations et la complexité du problème de satisfiabilité d'une formule logique. L'intégration des trois concepts "voir", "savoir" et "faire" dans une et une seule logique est évoquée en conclusion et reste une question ouverte.Agents are entities who perceive their environment and who perform actions. For instance in role playing video games, ennemies are agents who perceive some part of the virtual world and who can attack or launch a sortilege. Another example may concern robot assistance for disabled people: the robot perceives obstacles of the world and can alert humans or help them. Here, we try to give formal tools to model knowledge reasoning about the perception of their environment and about actions based, on modal logic. First, we give combine the standard epistemic modal logic with perception constructions of the form (agent a sees agent b). We give a semantics in terms of position and orientation of the agents in the space that can be a line (Lineland) or a plane (Flatland). Concerning Lineland, we provide a complete axiomatization and an optimal procedure for model-checking and satisfiability problem. Concerning Flatland, we show that both model-checking and satisfiability problem are decidable but the exact complexities and the axiomatization remain open problems. Thus, the logics of Lineland and Flatland are completely a new approach: their syntax is epistemic but their semantics concern spatial reasoning. Secondly, we study on the logic of agency ``see-to-it-that'' STIT made up of construction of the form [J]A standing for ``the coalition of agents J sees to it that A''. Our interest is motivated: STIT is strictly more expressive that standard modal logic for agency like Coalition Logic CL or Alternating-time Temporal Logic ATL. In CL or ATL the ``de re'' and ``de dicto'' problem is quite difficult and technical whereas if we combine STIT-operators with epistemic operators, we can solve it in a natural way. However this strong expressivity has a prize: the general version of STIT is undecidable. That is why we focus on some syntactic fragments of STIT: either we restrict the allowed coalitions J in constructions [J]A or we restrict the nesting of modal STIT-operators. We provide axiomatizations and complexity results. Finally, we give flavour to epistemic modal logic by adding STIT-operators. The logic STIT is suitable to express counterfactual statements like ``agent a could have choosen an action such that A have been true''. Thus we show how to model counterfactual emotions like regret, rejoicing, disappointment and elation in this framework. We also model epistemic games by adapting the logic STIT by giving explicitely names of actions in the language. In this framework, we can model the notion of rational agents but other kind of behaviour like altruism etc., Nash equilibrium and iterated deletion of strictly dominated strategies
    corecore