1,232 research outputs found

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007

    The Complexity of Satisfiability for Sub-Boolean Fragments of ALC

    Full text link
    The standard reasoning problem, concept satisfiability, in the basic description logic ALC is PSPACE-complete, and it is EXPTIME-complete in the presence of unrestricted axioms. Several fragments of ALC, notably logics in the FL, EL, and DL-Lite family, have an easier satisfiability problem; sometimes it is even tractable. All these fragments restrict the use of Boolean operators in one way or another. We look at systematic and more general restrictions of the Boolean operators and establish the complexity of the concept satisfiability problem in the presence of axioms. We separate tractable from intractable cases.Comment: 17 pages, accepted (in short version) to Description Logic Workshop 201

    Satisfiability for relation-changing logics

    Get PDF
    Relation-changing modal logics (RC for short) are extensions of the basic modal logic with dynamic operators that modify the accessibility relation of a model during the evaluation of a formula. These languages are equipped with dynamic modalities that are able e.g. to delete, add and swap edges in the model, both locally and globally. We study the satisfiability problem for some of these logics.We first show that they can be translated into hybrid logic. As a result, we can transfer some results from hybrid logics to RC. We discuss in particular decidability for some fragments. We then show that satisfiability is, in general, undecidable for all the languages introduced, via translations from memory logics.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Fervari, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martel, Mauricio. Universitat Bremen; Alemani

    The Complexity of Enriched Mu-Calculi

    Full text link
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.Comment: A preliminary version of this paper appears in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006. This paper has been selected for a special issue in LMC

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    Reasoning with Forest Logic Programs and f-hybrid Knowledge Bases

    Full text link
    Open Answer Set Programming (OASP) is an undecidable framework for integrating ontologies and rules. Although several decidable fragments of OASP have been identified, few reasoning procedures exist. In this article, we provide a sound, complete, and terminating algorithm for satisfiability checking w.r.t. Forest Logic Programs (FoLPs), a fragment of OASP where rules have a tree shape and allow for inequality atoms and constants. The algorithm establishes a decidability result for FoLPs. Although believed to be decidable, so far only the decidability for two small subsets of FoLPs, local FoLPs and acyclic FoLPs, has been shown. We further introduce f-hybrid knowledge bases, a hybrid framework where \SHOQ{} knowledge bases and forest logic programs co-exist, and we show that reasoning with such knowledge bases can be reduced to reasoning with forest logic programs only. We note that f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule component, providing thus a genuine alternative approach to current integration approaches of ontologies and rules

    On the Hybrid Extension of CTL and CTL+

    Full text link
    The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables
    corecore