172,954 research outputs found

    Existentially Restricted Quantified Constraint Satisfaction

    Full text link
    The quantified constraint satisfaction problem (QCSP) is a powerful framework for modelling computational problems. The general intractability of the QCSP has motivated the pursuit of restricted cases that avoid its maximal complexity. In this paper, we introduce and study a new model for investigating QCSP complexity in which the types of constraints given by the existentially quantified variables, is restricted. Our primary technical contribution is the development and application of a general technology for proving positive results on parameterizations of the model, of inclusion in the complexity class coNP

    Generalizing Consistency and other Constraint Properties to Quantified Constraints

    Full text link
    Quantified constraints and Quantified Boolean Formulae are typically much more difficult to reason with than classical constraints, because quantifier alternation makes the usual notion of solution inappropriate. As a consequence, basic properties of Constraint Satisfaction Problems (CSP), such as consistency or substitutability, are not completely understood in the quantified case. These properties are important because they are the basis of most of the reasoning methods used to solve classical (existentially quantified) constraints, and one would like to benefit from similar reasoning methods in the resolution of quantified constraints. In this paper, we show that most of the properties that are used by solvers for CSP can be generalized to quantified CSP. This requires a re-thinking of a number of basic concepts; in particular, we propose a notion of outcome that generalizes the classical notion of solution and on which all definitions are based. We propose a systematic study of the relations which hold between these properties, as well as complexity results regarding the decision of these properties. Finally, and since these problems are typically intractable, we generalize the approach used in CSP and propose weaker, easier to check notions based on locality, which allow to detect these properties incompletely but in polynomial time

    The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case

    Full text link
    The constraint satisfaction probem (CSP) is a well-acknowledged framework in which many combinatorial search problems can be naturally formulated. The CSP may be viewed as the problem of deciding the truth of a logical sentence consisting of a conjunction of constraints, in front of which all variables are existentially quantified. The quantified constraint satisfaction problem (QCSP) is the generalization of the CSP where universal quantification is permitted in addition to existential quantification. The general intractability of these problems has motivated research studying the complexity of these problems under a restricted constraint language, which is a set of relations that can be used to express constraints. This paper introduces collapsibility, a technique for deriving positive complexity results on the QCSP. In particular, this technique allows one to show that, for a particular constraint language, the QCSP reduces to the CSP. We show that collapsibility applies to three known tractable cases of the QCSP that were originally studied using disparate proof techniques in different decades: Quantified 2-SAT (Aspvall, Plass, and Tarjan 1979), Quantified Horn-SAT (Karpinski, Kleine B\"{u}ning, and Schmitt 1987), and Quantified Affine-SAT (Creignou, Khanna, and Sudan 2001). This reconciles and reveals common structure among these cases, which are describable by constraint languages over a two-element domain. In addition to unifying these known tractable cases, we study constraint languages over domains of larger size

    Existentially restricted quantified constraint satisfaction

    Get PDF
    AbstractThe quantified constraint satisfaction problem (QCSP) is a framework for modelling PSPACE computational problems. The general intractability of the QCSP has motivated the pursuit of restricted cases that avoid its maximal complexity. In this paper, we introduce and study a new model for investigating QCSP complexity in which the types of constraints given by the existentially quantified variables, is restricted. Our primary technical contribution is the development and application of a general technology for proving positive results on parameterizations of the model, of inclusion in the complexity class coNP

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    State Merging with Quantifiers in Symbolic Execution

    Full text link
    We address the problem of constraint encoding explosion which hinders the applicability of state merging in symbolic execution. Specifically, our goal is to reduce the number of disjunctions and if-then-else expressions introduced during state merging. The main idea is to dynamically partition the symbolic states into merging groups according to a similar uniform structure detected in their path constraints, which allows to efficiently encode the merged path constraint and memory using quantifiers. To address the added complexity of solving quantified constraints, we propose a specialized solving procedure that reduces the solving time in many cases. Our evaluation shows that our approach can lead to significant performance gains
    • …
    corecore