5,395 research outputs found

    The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for working with polynomial systems, particularly quantifier elimination. However, it has complexity doubly exponential in the number of variables. The base algorithm can be improved by adapting to take advantage of any equational constraints (ECs): equations logically implied by the input. Intuitively, we expect the double exponent in the complexity to decrease by one for each EC. In ISSAC 2015 the present authors proved this for the factor in the complexity bound dependent on the number of polynomials in the input. However, the other term, that dependent on the degree of the input polynomials, remained unchanged. In the present paper the authors investigate how CAD in the presence of ECs could be further refined using the technology of Groebner Bases to move towards the intuitive bound for polynomial degree

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    A "Piano Movers" Problem Reformulated

    Get PDF
    It has long been known that cylindrical algebraic decompositions (CADs) can in theory be used for robot motion planning. However, in practice even the simplest examples can be too complicated to tackle. We consider in detail a "Piano Mover's Problem" which considers moving an infinitesimally thin piano (or ladder) through a right-angled corridor. Producing a CAD for the original formulation of this problem is still infeasible after 25 years of improvements in both CAD theory and computer hardware. We review some alternative formulations in the literature which use differing levels of geometric analysis before input to a CAD algorithm. Simpler formulations allow CAD to easily address the question of the existence of a path. We provide a new formulation for which both a CAD can be constructed and from which an actual path could be determined if one exists, and analyse the CADs produced using this approach for variations of the problem. This emphasises the importance of the precise formulation of such problems for CAD. We analyse the formulations and their CADs considering a variety of heuristics and general criteria, leading to conclusions about tackling other problems of this form.Comment: 8 pages. Copyright IEEE 201

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm

    The twistor discriminant locus of the Fermat cubic

    Get PDF
    We consider the discriminant locus of the Fermat cubic under the twistor fibration CP3⟶S4CP^3 \longrightarrow S^4. We show that it has a conformal symmetry group of order 7272 and use this to identify its topology.Comment: 30 pages, 4 figure

    Validity proof of Lazard's method for CAD construction

    Full text link
    In 1994 Lazard proposed an improved method for cylindrical algebraic decomposition (CAD). The method comprised a simplified projection operation together with a generalized cell lifting (that is, stack construction) technique. For the proof of the method's validity Lazard introduced a new notion of valuation of a multivariate polynomial at a point. However a gap in one of the key supporting results for his proof was subsequently noticed. In the present paper we provide a complete validity proof of Lazard's method. Our proof is based on the classical parametrized version of Puiseux's theorem and basic properties of Lazard's valuation. This result is significant because Lazard's method can be applied to any finite family of polynomials, without any assumption on the system of coordinates. It therefore has wider applicability and may be more efficient than other projection and lifting schemes for CAD.Comment: 21 page

    An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

    Full text link
    In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature

    Constructing Fewer Open Cells by GCD Computation in CAD Projection

    Full text link
    A new projection operator based on cylindrical algebraic decomposition (CAD) is proposed. The new operator computes the intersection of projection factor sets produced by different CAD projection orders. In other words, it computes the gcd of projection polynomials in the same variables produced by different CAD projection orders. We prove that the new operator still guarantees obtaining at least one sample point from every connected component of the highest dimension, and therefore, can be used for testing semi-definiteness of polynomials. Although the complexity of the new method is still doubly exponential, in many cases, the new operator does produce smaller projection factor sets and fewer open cells. Some examples of testing semi-definiteness of polynomials, which are difficult to be solved by existing tools, have been worked out efficiently by our program based on the new method.Comment: Accepted by ISSAC 2014 (July 23--25, 2014, Kobe, Japan
    • …
    corecore