53 research outputs found

    Low-level dichotomy for Quantified Constraint Satisfaction Problems

    Full text link
    Building on a result of Larose and Tesson for constraint satisfaction problems (CSP s), we uncover a dichotomy for the quantified constraint satisfaction problem QCSP(B), where B is a finite structure that is a core. Specifically, such problems are either in ALogtime or are L-hard. This involves demonstrating that if CSP(B) is first-order expressible, and B is a core, then QCSP(B) is in ALogtime. We show that the class of B such that CSP(B) is first-order expressible (indeed, trivially true) is a microcosm for all QCSPs. Specifically, for any B there exists a C such that CSP(C) is trivially true, yet QCSP(B) and QCSP(C) are equivalent under logspace reductions

    Beyond Hypertree Width: Decomposition Methods Without Decompositions

    Full text link
    The general intractability of the constraint satisfaction problem has motivated the study of restrictions on this problem that permit polynomial-time solvability. One major line of work has focused on structural restrictions, which arise from restricting the interaction among constraint scopes. In this paper, we engage in a mathematical investigation of generalized hypertree width, a structural measure that has up to recently eluded study. We obtain a number of computational results, including a simple proof of the tractability of CSP instances having bounded generalized hypertree width

    Beyond Q-Resolution and Prenex Form: A Proof System for Quantified Constraint Satisfaction

    Get PDF
    We consider the quantified constraint satisfaction problem (QCSP) which is to decide, given a structure and a first-order sentence (not assumed here to be in prenex form) built from conjunction and quantification, whether or not the sentence is true on the structure. We present a proof system for certifying the falsity of QCSP instances and develop its basic theory; for instance, we provide an algorithmic interpretation of its behavior. Our proof system places the established Q-resolution proof system in a broader context, and also allows us to derive QCSP tractability results

    QCSP on partially reflexive forests

    Full text link
    We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and thereafter to accessibility from all vertices of H to connected reflexive subgraphs. In the case of partially reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL or is Pspace-complete

    Constraint Satisfaction with Counting Quantifiers

    Full text link
    We initiate the study of constraint satisfaction problems (CSPs) in the presence of counting quantifiers, which may be seen as variants of CSPs in the mould of quantified CSPs (QCSPs). We show that a single counting quantifier strictly between exists^1:=exists and exists^n:=forall (the domain being of size n) already affords the maximal possible complexity of QCSPs (which have both exists and forall), being Pspace-complete for a suitably chosen template. Next, we focus on the complexity of subsets of counting quantifiers on clique and cycle templates. For cycles we give a full trichotomy -- all such problems are in L, NP-complete or Pspace-complete. For cliques we come close to a similar trichotomy, but one case remains outstanding. Afterwards, we consider the generalisation of CSPs in which we augment the extant quantifier exists^1:=exists with the quantifier exists^j (j not 1). Such a CSP is already NP-hard on non-bipartite graph templates. We explore the situation of this generalised CSP on bipartite templates, giving various conditions for both tractability and hardness -- culminating in a classification theorem for general graphs. Finally, we use counting quantifiers to solve the complexity of a concrete QCSP whose complexity was previously open

    Quantified Constraints in Twenty Seventeen

    Get PDF
    I present a survey of recent advances in the algorithmic and computational complexity theory of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern research directions
    • …
    corecore