690 research outputs found

    The complexity of analyzing infinite-state Markov chains, Markov decision processes, and stochastic games (Invited talk)

    Get PDF
    In recent years, a considerable amount of research has been devoted to understanding the computational complexity of basic analysis problems, and model checking problems, for finitely-presented countable infinite-state probabilistic systems. In particular, we have studied recursive Markov chains (RMCs), recursive Markov decision processes (RMDPs) and recursive stochastic games (RSGs). These arise by adding a natural recursion feature to finite-state Markov chains, MDPs, and stochastic games. RMCs and RMDPs provide natural abstract models of probabilistic procedural programs with recursion, and they are expressively equivalent to probabilistic and MDP extensions of pushdown automata. Moreover, a number of well-studied stochastic processes, including multi-type branching processes, (discrete-time) quasi-birth-death processes, and stochastic context-free grammars, can be suitably captured by subclasses of RMCs. A central computational problem for analyzing various classes of recursive probabilistic systems is the computation of their (optimal) termination probabilities. These form a key ingredient for many other analyses, including model checking. For RMCs, and for important subclasses of RMDPs and RSGs, computing their termination values is equivalent to computing the least fixed point (LFP) solution of a corresponding monotone system of polynomial (min/max) equations. The complexity of computing the LFP solution for such equation systems is a intriguing problem, with connections to several areas of research. The LFP solution may in general be irrational. So, one possible aim is to compute it to within a desired additive error epsilon > 0. For general RMCs, approximating their termination probability within any non-trivial constant additive error < 1/2, is at least as hard as long-standing open problems in the complexity of numerical computation which are not even known to be in NP. For several key subclasses of RMCs and RMDPs, computing their termination values turns out to be much more tractable. In this talk I will survey algorithms for, and discuss the computational complexity of, key analysis problems for classes of infinite-state recursive MCs, MDPs, and stochastic games. In particular, I will discuss recent joint work with Alistair Stewart and Mihalis Yannakakis (in papers that appeared at STOC\u2712 and ICALP\u2712), in which we have obtained polynomial time algorithms for computing, to within arbitrary desired precision, the LFP solution of probabilistic polynomial (min/max) systems of equations. Using this, we obtained the first P-time algorithms for computing (within desired precision) the extinction probabilities of multi-type branching processes, the probability that an arbitrary given stochastic context-free grammar generates a given string, and the optimum (maximum or minimum) extinction probabilities for branching MDPs and context-free MDPs. For branching MDPs, their corresponding equations amount to Bellman optimality equations for minimizing/maximizing their termination probabilities. Our algorithms combine variations and generalizations of Newton\u27s method with other techniques, including linear programming. The algorithms are fairly easy to implement, but analyzing their worst-case running time is mathematically quite involved

    Solving Multi-objective Integer Programs using Convex Preference Cones

    Get PDF
    Esta encuesta tiene dos objetivos: en primer lugar, identificar a los individuos que fueron vĂ­ctimas de algĂșn tipo de delito y la manera en que ocurriĂł el mismo. En segundo lugar, medir la eficacia de las distintas autoridades competentes una vez que los individuos denunciaron el delito que sufrieron. Adicionalmente la ENVEI busca indagar las percepciones que los ciudadanos tienen sobre las instituciones de justicia y el estado de derecho en MĂ©xic

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit prĂ€sentiert AnsĂ€tze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlĂ€sslicher und klarer verstĂ€ndlich zu machen. Zuerst werden zwei Algorithmen fĂŒr heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte fĂŒr Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fĂŒr Kosten und beschrĂ€nkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprĂŒnglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und OptimalitĂ€tsbeweise fĂŒr die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfĂ€hig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen ZustandsrĂ€umen sogar ĂŒbertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) fĂŒr die QualitĂ€tsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingefĂŒhrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die KomplexitĂ€t der NN-Analyse in Kombination mit dem State Space Explosion Problem bewĂ€ltigt
    • 

    corecore