2,234 research outputs found

    GCC-Plugin for Automated Accelerator Generation and Integration on Hybrid FPGA-SoCs

    Full text link
    In recent years, architectures combining a reconfigurable fabric and a general purpose processor on a single chip became increasingly popular. Such hybrid architectures allow extending embedded software with application specific hardware accelerators to improve performance and/or energy efficiency. Aiding system designers and programmers at handling the complexity of the required process of hardware/software (HW/SW) partitioning is an important issue. Current methods are often restricted, either to bare-metal systems, to subsets of mainstream programming languages, or require special coding guidelines, e.g., via annotations. These restrictions still represent a high entry barrier for the wider community of programmers that new hybrid architectures are intended for. In this paper we revisit HW/SW partitioning and present a seamless programming flow for unrestricted, legacy C code. It consists of a retargetable GCC plugin that automatically identifies code sections for hardware acceleration and generates code accordingly. The proposed workflow was evaluated on the Xilinx Zynq platform using unmodified code from an embedded benchmark suite.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    A Reconfigurable Vector Instruction Processor for Accelerating a Convection Parametrization Model on FPGAs

    Full text link
    High Performance Computing (HPC) platforms allow scientists to model computationally intensive algorithms. HPC clusters increasingly use General-Purpose Graphics Processing Units (GPGPUs) as accelerators; FPGAs provide an attractive alternative to GPGPUs for use as co-processors, but they are still far from being mainstream due to a number of challenges faced when using FPGA-based platforms. Our research aims to make FPGA-based high performance computing more accessible to the scientific community. In this work we present the results of investigating the acceleration of a particular atmospheric model, Flexpart, on FPGAs. We focus on accelerating the most computationally intensive kernel from this model. The key contribution of our work is the architectural exploration we undertook to arrive at a solution that best exploits the parallelism available in the legacy code, and is also convenient to program, so that eventually the compilation of high-level legacy code to our architecture can be fully automated. We present the three different types of architecture, comparing their resource utilization and performance, and propose that an architecture where there are a number of computational cores, each built along the lines of a vector instruction processor, works best in this particular scenario, and is a promising candidate for a generic FPGA-based platform for scientific computation. We also present the results of experiments done with various configuration parameters of the proposed architecture, to show its utility in adapting to a range of scientific applications.Comment: This is an extended pre-print version of work that was presented at the international symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART2014), Sendai, Japan, June 911, 201

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Static Analysis-based Debugging, Certification, Testing, and Optimization with CiaoPP

    Get PDF
    Facilitate the development of safe, efficient programs. Approach: •Next-generation, higher-level, multiparadigm prog. languages. •Improved program development environments. •A framework (CiaoPP) which integrates: •Debugging. •Verification and certification. •Testing. •Optimization (optimized compilation, parallelization, ...

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families
    corecore