2,724 research outputs found

    Network protocol scalability via a topological Kadanoff transformation

    Full text link
    A natural hierarchical framework for network topology abstraction is presented based on an analogy with the Kadanoff transformation and renormalisation group in theoretical physics. Some properties of the renormalisation group bear similarities to the scalability properties of network routing protocols (interactions). Central to our abstraction are two intimately connected and complementary path diversity units: simple cycles, and cycle adjacencies. A recursive network abstraction procedure is presented, together with an associated generic recursive routing protocol family that offers many desirable features.Comment: 4 pages, 5 figures, PhysComNet 2008 workshop submissio

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new specification for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    The mixed capacitated arc routing problem with non-overlapping routes

    Get PDF
    Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems, with additional and complicating constraints. In this paper we focus on arc routing with an additional constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service routes with a limited number of intersections. This constraint leads to solutions that are better shaped for real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an upper bound on the number of nodes that are common to different routes. The best feasible upper bound is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for the bigger instances of the KARP heuristics are also proposed. Computational results taken from two well known instance sets show that, with only a small increase in total time traveled, the model BCARP produces solutions that are more attractive to implement in practice than those produced by the MCARP modelinfo:eu-repo/semantics/submittedVersio

    Districting Problems - New Geometrically Motivated Approaches

    Get PDF
    This thesis focuses on districting problems were the basic areas are represented by points or lines. In the context of points, it presents approaches that utilize the problem\u27s underlying geometrical information. For lines it introduces an algorithm combining features of geometric approaches, tabu search, and adaptive randomized neighborhood search that includes the routing distances explicitly. Moreover, this thesis summarizes, compares and enhances existing compactness measures

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, PkkγP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure

    A new three phase method (SDP method) for the multi-objective vehicle routing problem with simultaneous delivery and pickup (VRPSDP)

    Get PDF
    Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP

    An improved multiple classifier combination scheme for pattern classification

    Get PDF
    Combining multiple classifiers are considered as a new direction in the pattern recognition to improve classification performance. The main problem of multiple classifier combination is that there is no standard guideline for constructing an accurate and diverse classifier ensemble. This is due to the difficulty in identifying the number of homogeneous classifiers and how to combine the classifier outputs. The most commonly used ensemble method is the random strategy while the majority voting technique is used as the combiner. However, the random strategy cannot determine the number of classifiers and the majority voting technique does not consider the strength of each classifier, thus resulting in low classification accuracy. In this study, an improved multiple classifier combination scheme is proposed. The ant system (AS) algorithm is used to partition feature set in developing feature subsets which represent the number of classifiers. A compactness measure is introduced as a parameter in constructing an accurate and diverse classifier ensemble. A weighted voting technique is used to combine the classifier outputs by considering the strength of the classifiers prior to voting. Experiments were performed using four base classifiers, which are Nearest Mean Classifier (NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the proposed multiple classifier combination scheme. The average classification accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those obtained through the use of other approaches in developing multiple classifier combination. The proposed multiple classifier combination scheme will help to develop other multiple classifier combination for pattern recognition and classification
    corecore