17,416 research outputs found

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) → R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members — that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ≥ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph

    Dynamic Multi-Agent Based Variety Formation and Steering in Mass Customization

    Get PDF
    Large product variety in mass customization involves a high internal complexity level inside a company’s operations, as well as a high external complexity level from a customer’s perspective. To cope with both complexity problems, an information system based on agent technology is able to be identified as a suitable solution approach. The mass customized products are assumed to be based on a modular architecture and each module variant is associated with an autonomous rational agent. Agents have to compete with each other in order to join coalitions representing salable product variants which suit real customers’ requirements. The negotiation process is based on a market mechanism supported by the target costing concept and a Dutch auction. Furthermore, in order to integrate the multi-agent system in the existing information system landscape of the mass customizer, a technical architecture is proposed and a scenario depicting the main communication steps is specified.Product Configuration, Mass Customization, Variety Formation and Steering, Multi Agent System

    Decentralised Coordination in RoboCup Rescue

    No full text
    Emergency responders are faced with a number of significant challenges when managing major disasters. First, the number of rescue tasks posed is usually larger than the number of responders (or agents) and the resources available to them. Second, each task is likely to require a different level of effort in order to be completed by its deadline. Third, new tasks may continually appear or disappear from the environment, thus requiring the responders to quickly recompute their allocation of resources. Fourth, forming teams or coalitions of multiple agents from different agencies is vital since no single agency will have all the resources needed to save victims, unblock roads, and extinguish the ?res which might erupt in the disaster space. Given this, coalitions have to be efficiently selected and scheduled to work across the disaster space so as to maximise the number of lives and the portion of the infrastructure saved. In particular, it is important that the selection of such coalitions should be performed in a decentralised fashion in order to avoid a single point of failure in the system. Moreover, it is critical that responders communicate only locally given they are likely to have limited battery power or minimal access to long range communication devices. Against this background, we provide a novel decentralised solution to the coalition formation process that pervades disaster management. More specifically, we model the emergency management scenario defined in the RoboCup Rescue disaster simulation platform as a Coalition Formation with Spatial and Temporal constraints (CFST) problem where agents form coalitions in order to complete tasks, each with different demands. In order to design a decentralised algorithm for CFST we formulate it as a Distributed Constraint Optimisation problem and show how to solve it using the state-of-the-art Max-Sum algorithm that provides a completely decentralised message-passing solution. We then provide a novel algorithm (F-Max-Sum) that avoids sending redundant messages and efficiently adapts to changes in the environment. In empirical evaluations, our algorithm is shown to generate better solutions than other decentralised algorithms used for this problem

    Diffusion of shared goods in consumer coalitions. An agent-based model

    Get PDF
    This paper focuses on the process of coalition formation conditioning the common decision to adopt a shared good, which cannot be afforded by an average single consumer and whose use cannot be exhausted by any single consumer. An agent based model is developed to study the interplay between these two processes: coalition formation and diffusion of shared goods. Coalition formation is modelled in an evolutionary game theoretic setting, while adoption uses elements from both the Bass and the threshold models. Coalitions formation sets the conditions for adoption, while diffusion influences the consequent formation of coalitions. Results show that both coalitions and diffusion are subject to network effects and have an impact on the information flow though the population of consumers. Large coalitions are preferred over small ones since individual cost is lower, although it increases if higher quantities are purchased collectively. The paper concludes by connecting the model conceptualisation to the on-going discussion of diffusion of sustainable goods, discussing related policy implications
    • …
    corecore