50 research outputs found

    The Combinatorics of Al-Salam-Chihara qq-Laguerre polynomials

    Get PDF
    We describe various aspects of the Al-Salam-Chihara qq-Laguerre polynomials. These include combinatorial descriptions of the polynomials, the moments, the orthogonality relation and a combinatorial interpretation of the linearization coefficients. It is remarkable that the corresponding moment sequence appears also in the recent work of Postnikov and Williams on enumeration of totally positive Grassmann cells.Comment: 23 pages, to appear in Adv. in Appl. Math

    Combinatorics of the three-parameter PASEP partition function

    Full text link
    We consider a partially asymmetric exclusion process (PASEP) on a finite number of sites with open and directed boundary conditions. Its partition function was calculated by Blythe, Evans, Colaiori, and Essler. It is known to be a generating function of permutation tableaux by the combinatorial interpretation of Corteel and Williams. We prove bijectively two new combinatorial interpretations. The first one is in terms of weighted Motzkin paths called Laguerre histories and is obtained by refining a bijection of Foata and Zeilberger. Secondly we show that this partition function is the generating function of permutations with respect to right-to-left minima, right-to-left maxima, ascents, and 31-2 patterns, by refining a bijection of Francon and Viennot. Then we give a new formula for the partition function which generalizes the one of Blythe & al. It is proved in two combinatorial ways. The first proof is an enumeration of lattice paths which are known to be a solution of the Matrix Ansatz of Derrida & al. The second proof relies on a previous enumeration of rook placements, which appear in the combinatorial interpretation of a related normal ordering problem. We also obtain a closed formula for the moments of Al-Salam-Chihara polynomials.Comment: 31 page

    The Matrix Ansatz, Orthogonal Polynomials, and Permutations

    Get PDF
    In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux.Comment: to appear in Advances in Applied Mathematics, special issue for Dennis Stanto

    Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials

    Full text link
    We propose a new approach to the combinatorial interpretations of linearization coefficient problem of orthogonal polynomials. We first establish a difference system and then solve it combinatorially and analytically using the method of separation of variables. We illustrate our approach by applying it to determine the number of perfect matchings, derangements, and other weighted permutation problems. The separation of variables technique naturally leads to integral representations of combinatorial numbers where the integrand contains a product of one or more types of orthogonal polynomials. This also establishes the positivity of such integrals.Comment: Journal of Combinatorial Theory, Series A 120 (2013) 561--59

    Crossings, Motzkin paths and Moments

    Get PDF
    Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain qq-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulas for the moments of the qq-Laguerre and the qq-Charlier polynomials, in the style of the Touchard-Riordan formula (which gives the moments of some qq-Hermite polynomials, and also the distribution of crossings in matchings). Our method mainly consists in the enumeration of weighted Motzkin paths, which are naturally associated with the moments. Some steps are bijective, in particular we describe a decomposition of paths which generalises a previous construction of Penaud for the case of the Touchard-Riordan formula. There are also some non-bijective steps using basic hypergeometric series, and continued fractions or, alternatively, functional equations.Comment: 21 page

    Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials

    Full text link
    Introduced in the late 1960's, the asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and protein synthesis. In the most general form of the ASEP with open boundaries, particles may enter and exit at the left with probabilities alpha and gamma, and they may exit and enter at the right with probabilities beta and delta. In the bulk, the probability of hopping left is q times the probability of hopping right. The first main result of this paper is a combinatorial formula for the stationary distribution of the ASEP with all parameters general, in terms of a new class of tableaux which we call staircase tableaux. This generalizes our previous work for the ASEP with parameters gamma=delta=0. Using our first result and also results of Uchiyama-Sasamoto-Wadati, we derive our second main result: a combinatorial formula for the moments of Askey-Wilson polynomials. Since the early 1980's there has been a great deal of work giving combinatorial formulas for moments of various other classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre, Meixner). However, this is the first such formula for the Askey-Wilson polynomials, which are at the top of the hierarchy of classical orthogonal polynomials.Comment: An announcement of these results appeared here: http://www.pnas.org/content/early/2010/03/25/0909915107.abstract This version of the paper has updated references and corrects a gap in the proof of Proposition 6.11 which was in the published versio
    corecore