285,754 research outputs found

    Choosing Colors for Geometric Graphs via Color Space Embeddings

    Full text link
    Graph drawing research traditionally focuses on producing geometric embeddings of graphs satisfying various aesthetic constraints. After the geometric embedding is specified, there is an additional step that is often overlooked or ignored: assigning display colors to the graph's vertices. We study the additional aesthetic criterion of assigning distinct colors to vertices of a geometric graph so that the colors assigned to adjacent vertices are as different from one another as possible. We formulate this as a problem involving perceptual metrics in color space and we develop algorithms for solving this problem by embedding the graph in color space. We also present an application of this work to a distributed load-balancing visualization problem.Comment: 12 pages, 4 figures. To appear at 14th Int. Symp. Graph Drawing, 200

    Sum Coloring : New upper bounds for the chromatic strength

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is derived from the Graph Coloring Problem (GCP) by associating a weight to each color. The aim of MSCP is to find a coloring solution of a graph such that the sum of color weights is minimum. MSCP has important applications in fields such as scheduling and VLSI design. We propose in this paper new upper bounds of the chromatic strength, i.e. the minimum number of colors in an optimal solution of MSCP, based on an abstraction of all possible colorings of a graph called motif. Experimental results on standard benchmarks show that our new bounds are significantly tighter than the previous bounds in general, allowing to reduce substantially the search space when solving MSCP .Comment: pre-prin

    Trivalent graphs, volume conjectures and character varieties

    Full text link
    The generalized volume conjecture and the AJ conjecture (a.k.a. the quantum volume conjecture) are extended to U_q(\fraksl_2) colored quantum invariants of the theta and tetrahedron graph. The \SL(2,\bC) character variety of the fundamental group of the complement of a trivalent graph with EE edges in S3S^3 is a Lagrangian subvariety of the Hitchin moduli space over the Riemann surface of genus g=E/3+1g=E/3+1. For the theta and tetrahedron graph, we conjecture that the configuration of the character variety is locally determined by large color asymptotics of the quantum invariants of the trivalent graph in terms of complex Fenchel-Nielsen coordinates. Moreover, the qq-holonomic difference equation of the quantum invariants provides the quantization of the character variety.Comment: 11 pages, 2 figure

    Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring

    Get PDF
    A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. In this paper, we revisit this problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: Massively Parallel Computation. We give a randomized MPC algorithm that w.h.p., returns a (1+o(1))Delta edge coloring in O(1) rounds using O~(n) space per machine and O(m) total space. The space per machine can also be further improved to n^{1-Omega(1)} if Delta = n^{Omega(1)}. This is, to our knowledge, the first constant round algorithm for a natural graph problem in the strongly sublinear regime of MPC. Our algorithm improves a previous result of Harvey et al. [SPAA 2018] which required n^{1+Omega(1)} space to achieve the same result. Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors w.h.p., if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps
    corecore