1,157 research outputs found

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    Embodied Footprints: A Safety-guaranteed Collision Avoidance Model for Numerical Optimization-based Trajectory Planning

    Full text link
    Numerical optimization-based methods are among the prevalent trajectory planners for autonomous driving. In a numerical optimization-based planner, the nominal continuous-time trajectory planning problem is discretized into a nonlinear program (NLP) problem with finite constraints imposed on finite collocation points. However, constraint violations between adjacent collocation points may still occur. This study proposes a safety-guaranteed collision-avoidance modeling method to eliminate the collision risks between adjacent collocation points in using numerical optimization-based trajectory planners. A new concept called embodied box is proposed, which is formed by enlarging the rectangular footprint of the ego vehicle. If one can ensure that the embodied boxes at finite collocation points are collide-free, then the ego vehicle's footprint is collide-free at any a moment between adjacent collocation points. We find that the geometric size of an embodied box is a simple function of vehicle velocity and curvature. The proposed theory lays a foundation for numerical optimization-based trajectory planners in autonomous driving.Comment: 12 pages, 13 figure

    Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors

    Get PDF
    There is concern regarding the heterogeneity of exposure to airborne particulate matter (PM) across urban areas leading to negatively biased health effects models. New, low-cost sensors now permit continuous and simultaneous measurements to be made in multiple locations. Measurements of ambient PM were made from October to April 2015–2016 and 2016–2017 to assess the spatial and temporal variability in PM and the relative importance of traffic and wood smoke to outdoor PM concentrations in Rochester, NY, USA. In general, there was moderate spatial inhomogeneity, as indicated by multiple pairwise measures including coefficient of divergence and signed rank tests of the value distributions. Pearson correlation coefficients were often moderate (~50% of units showed correlations >0.5 during the first season), indicating that there was some coherent variation across the area, likely driven by a combination of meteorological conditions (wind speed, direction, and mixed layer heights) and the concentration of PM2.5 being transported into the region. Although the accuracy of these PM sensors is limited, they are sufficiently precise relative to one another and to research grade instruments that they can be useful is assessing the spatial and temporal variations across an area and provide concentration estimates based on higher-quality central site monitoring data

    The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC

    Get PDF
    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    Grey-Box Building Models for Model Order Reduction and Control

    Get PDF
    As automatic sensing and Information and Communication Technology (ICT) get cheaper, building monitoring data is easier to obtain. The abundance of data leads to new opportunities in the context of energy efficiency in buildings. This paper describes ongoing developments and first results of data-driven grey-box modelling for buildings. A Python toolbox is developed based on a Modelica library with thermal building and Heating, Ventilation and Air-Conditioning (HVAC) models and the optimisation framework in JModelica.org. The tool chain facilitates and automates the different steps in the system identification procedure, like data handling, model selection, parameter estimation and validation. The results of a system identification and parameter estimation for a single-family dwelling are presented

    Trajectory optimization and motion planning for quadrotors in unstructured environments

    Get PDF
    Trajectory optimization and motion planning for quadrotors in unstructured environments Coming out from university labs robots perform tasks usually navigating through unstructured environment. The realization of autonomous motion in such type of environments poses a number of challenges compared to highly controlled laboratory spaces. In unstructured environments robots cannot rely on complete knowledge of their sorroundings and they have to continously acquire information for decision making. The challenges presented are a consequence of the high-dimensionality of the state-space and of the uncertainty introduced by modeling and perception. This is even more true for aerial-robots that has a complex nonlinear dynamics a can move freely in 3D-space. To avoid this complexity a robot have to select a small set of relevant features, reason on a reduced state space and plan trajectories on short-time horizon. This thesis is a contribution towards the autonomous navigation of aerial robots (quadrotors) in real-world unstructured scenarios. The first three chapters present a contribution towards an implementation of Receding Time Horizon Optimal Control. The optimization problem for a model based trajectory generation in environments with obstacles is set, using an approach based on variational calculus and modeling the robots in the SE(3) Lie Group of 3D space transformations. The fourth chapter explores the problem of using minimal information and sensing to generate motion towards a goal in an indoor bulding-like scenario. The fifth chapter investigate the problem of extracting visual features from the environment to control the motion in an indoor corridor-like scenario. The last chapter deals with the problem of spatial reasoning and motion planning using atomic proposition in a multi-robot environments with obstacles

    Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress

    Get PDF
    The United States Environmental Protection Agency held an international two-day workshop in June 2018 to deliberate possible performance targets for non-regulatory fine particulate matter (PM2.5) and ozone (O3) air sensors. The need for a workshop arose from the lack of any market-wide manufacturer requirement for documented sensor performance evaluations, the lack of any independent third party or government-based sensor performance certification program, and uncertainty among all users as to the general usability of air sensor data. A multi-sector subject matter expert panel was assembled to facilitate an open discussion on these issues with multiple stakeholders. This summary provides an overview of the workshop purpose, key findings from the deliberations, and considerations for future actions specific to sensors. Important findings concerning PM2.5 and O3 sensors included the lack of consistent performance indicators and statistical metrics as well as highly variable data quality requirements depending on the intended use. While the workshop did not attempt to yield consensus on any topic, a key message was that a number of possible future actions would be beneficial to all stakeholders regarding sensor technologies. These included documentation of best practices, sharing quality assurance results along with sensor data, and the development of a common performance target lexicon, performance targets, and test protocols. Keywords: Low-cost air quality sensors, Performance targets, PM2.5, Ozon
    • …
    corecore