68 research outputs found

    Merging the local and global approaches to probabilistic satisfiability

    Get PDF
    AbstractThe probabilistic satisfiability problem is to verify the consistency of a set of probability values or intervals for logical propositions. The (tight) probabilistic entailment problem is to find best bounds on the probability of an additional proposition. The local approach to these problems applies rules on small sets of logical sentences and probabilities to tighten given probability intervals. The global approach uses linear programming to find best bounds. We show that merging these approaches is profitable to both: local solutions can be used to find global solutions more quickly through stabilized column generation, and global solutions can be used to confirm or refute the optimality of the local solutions found. As a result, best bounds are found, together with their step-by-step justification

    Strict coherence on many valued-events

    Get PDF
    We investigate the property of strict coherence in the setting of many-valued logics. Our main results read as follows: (i) a map from an MV-algebra to [0,1] is strictly coherent if and only if it satisfies Carnap\u2019s regularity condition, and (ii) a [0,1]-valued book on a finite set of many-valued events is strictly coherent if and only if it extends to a faithful state of an MV-algebra that contains them. Remarkably this latter result allows us to relax the rather demanding conditions for the Shimony-Kemeny characterisation of strict coherence put forward in the mid 1950s in this Journal

    Probabilistic Reasoning with Abstract Argumentation Frameworks

    Get PDF
    Abstract argumentation offers an appealing way of representing and evaluating arguments and counterarguments. This approach can be enhanced by considering probability assignments on arguments, allowing for a quantitative treatment of formal argumentation. In this paper, we regard the assignment as denoting the degree of belief that an agent has in an argument being acceptable. While there are various interpretations of this, an example is how it could be applied to a deductive argument. Here, the degree of belief that an agent has in an argument being acceptable is a combination of the degree to which it believes the premises, the claim, and the derivation of the claim from the premises. We consider constraints on these probability assignments, inspired by crisp notions from classical abstract argumentation frameworks and discuss the issue of probabilistic reasoning with abstract argumentation frameworks. Moreover, we consider the scenario when assessments on the probabilities of a subset of the arguments are given and the probabilities of the remaining arguments have to be derived, taking both the topology of the argumentation framework and principles of probabilistic reasoning into account. We generalise this scenario by also considering inconsistent assessments, i.e., assessments that contradict the topology of the argumentation framework. Building on approaches to inconsistency measurement, we present a general framework to measure the amount of conflict of these assessments and provide a method for inconsistency-tolerant reasoning

    A Propositional CONEstrip Algorithm

    Get PDF
    We present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations of propositional sentences. The variant differs from the original algorithm in that we apply row generation techniques. The generator problem is WPMaxSAT, an optimization variant of SAT; both can be solved with specialized solvers or integer linear programming techniques. We additionally show how optimization problems over the cone can be solved by using our propositional CONEstrip algorithm as a preprocessor. The algorithm is designed to support consistency and inference computations within the theory of sets of desirable gambles. We also make a link to similar computations in probabilistic logic, conditional probability assessments, and imprecise probability theory

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Linguistic probability theory

    Get PDF
    In recent years probabilistic knowledge-based systems such as Bayesian networks and influence diagrams have come to the fore as a means of representing and reasoning about complex real-world situations. Although some of the probabilities used in these models may be obtained statistically, where this is impossible or simply inconvenient, modellers rely on expert knowledge. Experts, however, typically find it difficult to specify exact probabilities and conventional representations cannot reflect any uncertainty they may have. In this way, the use of conventional point probabilities can damage the accuracy, robustness and interpretability of acquired models. With these concerns in mind, psychometric researchers have demonstrated that fuzzy numbers are good candidates for representing the inherent vagueness of probability estimates, and the fuzzy community has responded with two distinct theories of fuzzy probabilities.This thesis, however, identifies formal and presentational problems with these theories which render them unable to represent even very simple scenarios. This analysis leads to the development of a novel and intuitively appealing alternative - a theory of linguistic probabilities patterned after the standard Kolmogorov axioms of probability theory. Since fuzzy numbers lack algebraic inverses, the resulting theory is weaker than, but generalises its classical counterpart. Nevertheless, it is demonstrated that analogues for classical probabilistic concepts such as conditional probability and random variables can be constructed. In the classical theory, representation theorems mean that most of the time the distinction between mass/density distributions and probability measures can be ignored. Similar results are proven for linguistic probabiliities.From these results it is shown that directed acyclic graphs annotated with linguistic probabilities (under certain identified conditions) represent systems of linguistic random variables. It is then demonstrated these linguistic Bayesian networks can utilise adapted best-of-breed Bayesian network algorithms (junction tree based inference and Bayes' ball irrelevancy calculation). These algorithms are implemented in ARBOR, an interactive design, editing and querying tool for linguistic Bayesian networks.To explore the applications of these techniques, a realistic example drawn from the domain of forensic statistics is developed. In this domain the knowledge engineering problems cited above are especially pronounced and expert estimates are commonplace. Moreover, robust conclusions are of unusually critical importance. An analysis of the resulting linguistic Bayesian network for assessing evidential support in glass-transfer scenarios highlights the potential utility of the approach

    Coordinating Charging Behavior : Engineering Systems for Electric Vehicle Users

    Get PDF
    • …
    corecore