405 research outputs found

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<∞C(r) < \infty such that, for all loopless graphs GG of maximum degree ≤r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc ∣q∣<C(r)|q| < C(r). Furthermore, C(r)≤7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime ∣1+ve∣≤1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree ≤r\le r, the zeros of PG(q)P_G(q) lie in the disc ∣q∣<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin
    • …
    corecore