1,842 research outputs found

    Backbone colorings for networks: tree and path backbones

    Get PDF
    We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G=(V,E)G=(V,E) and a spanning subgraph HH of GG (the backbone of GG), a backbone coloring for GG and HH is a proper vertex coloring V→{1,2,…}V\rightarrow \{1,2,\ldots\} of GG in which the colors assigned to adjacent vertices in HH differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path

    Extremal Colorings and Independent Sets

    Get PDF
    We consider several extremal problems of maximizing the number of colorings and independent sets in some graph families with fixed chromatic number and order. First, we address the problem of maximizing the number of colorings in the family of connected graphs with chromatic number k and order n where k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. It was conjectured that extremal graphs are those which have clique number k and size (k2)+n−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(k2)+n−k(k2)+n−k. We affirm this conjecture for 4-chromatic claw-free graphs and for all k-chromatic line graphs with k≥4 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3ek≥4k≥4. We also reduce this extremal problem to a finite family of graphs when restricted to claw-free graphs. Secondly, we determine the maximum number of independent sets of each size in the family of n-vertex k-chromatic graphs (respectively connected n-vertex k-chromatic graphs and n-vertex k-chromatic graphs with c components). We show that the unique extremal graph is Kk∪En−k role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eKk∪En−kKk∪En−k, K1∨(Kk−1∪En−k) role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eK1∨(Kk−1∪En−k)K1∨(Kk−1∪En−k) and (K1∨(Kk−1∪En−k−c+1))∪Ec−1 role= presentation style= box-sizing: inherit; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 18px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e(K1∨(Kk−1∪En−k−c+1))∪Ec−1(K1∨(Kk−1∪En−k−c+1))∪Ec−1 respectively

    Enumerative properties of Ferrers graphs

    Full text link
    We define a class of bipartite graphs that correspond naturally with Ferrers diagrams. We give expressions for the number of spanning trees, the number of Hamiltonian paths when applicable, the chromatic polynomial, and the chromatic symmetric function. We show that the linear coefficient of the chromatic polynomial is given by the excedance set statistic.Comment: 12 page
    • …
    corecore