1,411 research outputs found

    Airborne LiDAR for DEM generation: some critical issues

    Get PDF
    Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for DEM generation is becoming a standard practice in spatial related areas. However, the effective processing of the raw LiDAR data and the generation of an efficient and high-quality DEM remain big challenges. This paper reviews the recent advances of airborne LiDAR systems and the use of LiDAR data for DEM generation, with special focus on LiDAR data filters, interpolation methods, DEM resolution, and LiDAR data reduction. Separating LiDAR points into ground and non-ground is the most critical and difficult step for DEM generation from LiDAR data. Commonly used and most recently developed LiDAR filtering methods are presented. Interpolation methods and choices of suitable interpolator and DEM resolution for LiDAR DEM generation are discussed in detail. In order to reduce the data redundancy and increase the efficiency in terms of storage and manipulation, LiDAR data reduction is required in the process of DEM generation. Feature specific elements such as breaklines contribute significantly to DEM quality. Therefore, data reduction should be conducted in such a way that critical elements are kept while less important elements are removed. Given the highdensity characteristic of LiDAR data, breaklines can be directly extracted from LiDAR data. Extraction of breaklines and integration of the breaklines into DEM generation are presented

    Optimising visibility analyses using topographic features on the terrain

    Get PDF

    Fast approximation of visibility dominance using topographic features as targets and the associated uncertainty

    Get PDF
    An approach to reduce visibility index computation time andmeasure the associated uncertainty in terrain visibility analysesis presented. It is demonstrated that the visibility indexcomputation time in mountainous terrain can be reduced substantially,without any significant information loss, if the lineof sight from each observer on the terrain is drawn only to thefundamental topographic features, i.e., peaks, pits, passes,ridges, and channels. However, the selected sampling of targetsresults in an underestimation of the visibility index ofeach observer. Two simple methods based on iterative comparisonsbetween the real visibility indices and the estimatedvisibility indices have been proposed for a preliminary assessmentof this uncertainty. The method has been demonstratedfor gridded digital elevation models

    An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification

    Get PDF
    A statistical approach to LiDAR derived topographic attributes for the automatic extraction of channel network and for the choice of the scale to apply for parameter evaluation is presented in this paper. The basis of this approach is to use distribution analysis and statistical descriptors to identify channels where terrain geometry denotes significant convergences. Two case study areas with different morphology and degree of organization are used with their 1 m LiDAR Digital Terrain Models (DTMs). Topographic attribute maps (curvature and openness) for various window sizes are derived from the DTMs in order to detect surface convergences. A statistical analysis on value distributions considering each window size is carried out for the choice of the optimum kernel. We propose a three-step method to extract the network based (a) on the normalization and overlapping of openness and minimum curvature to highlight the more likely surface convergences, (b) a weighting of the upslope area according to these normalized maps to identify drainage flow paths and flow accumulation consistent with terrain geometry, (c) the standard score normalization of the weighted upslope area and the use of standard score values as non subjective threshold for channel network identification. As a final step for optimal definition and representation of the whole network, a noise-filtering and connection procedure is applied. The advantage of the proposed methodology, and the efficiency and accurate localization of extracted features are demonstrated using LiDAR data of two different areas and comparing both extractions with field surveyed networks

    recognition of surface flow processes influenced by roads and trails in mountain areas using high resolution topography

    Get PDF
    AbstractRoad networks in mountainous forest landscapes have the potential to increase the susceptibility to erosion and shallow landsliding. The same issue is observed also for minor trail networks, with evidences of surface erosion due to surface flow redistribution. This could be a problem in regions such as the Italian Alps where forestry and tourist activities are a relevant part of the local economy. This is just one among the several effects of modern anthropogenic forcing: it is now well accepted by the scientific community that we are living in a new era where human activities may leave a significant signature on the Earth, by altering its morphology, and significantly affecting the related surface processes. In this work, we proposed a methodology for the automatic recognition of roads and trails induced flow direction changes. The algorithm is based on the calculation of the drainage area variation in the presence, or in the absence of anthropic features such as roads and trails on hillslopes. T..

    TERRESTRIAL LASER SCANNER DATA TO SUPPORT COASTAL EROSION ANALYSIS: THE CONERO CASE STUDY

    Get PDF
    In this work a detailed TLS survey was carried out in summer 2012, in the Conero Regional Park (Marche, province of Ancona), along the "spiaggia San Michele" and "spiaggia Sassi Neri". These areas present several sections affected by erosion, rock falls and slope failures. They also belong to a very prestigious place for tourism during the summer season; therefore, deriving a risk map for these areas is really useful. Thanks to the TLS survey, it was possible to obtain a centimetre resolution DTM covering a reach of about 1.5 km of the coast. This high resolution DTM was used to derive some primary topographic attributes that allowed to arrange a preliminary discussion about the likely unstable areas. These topographic information and results will also serve as the reference point for future yearly TLS surveys, which will absolutely help in recognizing any micro changes and slope failures, improving the risk maps

    Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues

    Get PDF
    This paper reviews LiDAR ground filtering algorithms used in the process of creating Digital Elevation Models. We discuss critical issues for the development and application of LiDAR ground filtering algorithms, including filtering procedures for different feature types, and criteria for study site selection, accuracy assessment, and algorithm classification. This review highlights three feature types for which current ground filtering algorithms are suboptimal, and which can be improved upon in future studies: surfaces with rough terrain or discontinuous slope, dense forest areas that laser beams cannot penetrate, and regions with low vegetation that is often ignored by ground filters

    Land-Surface Parameters for Spatial Predictive Mapping and Modeling

    Get PDF
    Land-surface parameters derived from digital land surface models (DLSMs) (for example, slope, surface curvature, topographic position, topographic roughness, aspect, heat load index, and topographic moisture index) can serve as key predictor variables in a wide variety of mapping and modeling tasks relating to geomorphic processes, landform delineation, ecological and habitat characterization, and geohazard, soil, wetland, and general thematic mapping and modeling. However, selecting features from the large number of potential derivatives that may be predictive for a specific feature or process can be complicated, and existing literature may offer contradictory or incomplete guidance. The availability of multiple data sources and the need to define moving window shapes, sizes, and cell weightings further complicate selecting and optimizing the feature space. This review focuses on the calculation and use of DLSM parameters for empirical spatial predictive modeling applications, which rely on training data and explanatory variables to make predictions of landscape features and processes over a defined geographic extent. The target audience for this review is researchers and analysts undertaking predictive modeling tasks that make use of the most widely used terrain variables. To outline best practices and highlight future research needs, we review a range of land-surface parameters relating to steepness, local relief, rugosity, slope orientation, solar insolation, and moisture and characterize their relationship to geomorphic processes. We then discuss important considerations when selecting such parameters for predictive mapping and modeling tasks to assist analysts in answering two critical questions: What landscape conditions or processes does a given measure characterize? How might a particular metric relate to the phenomenon or features being mapped, modeled, or studied? We recommend the use of landscape- and problem-specific pilot studies to answer, to the extent possible, these questions for potential features of interest in a mapping or modeling task. We describe existing techniques to reduce the size of the feature space using feature selection and feature reduction methods, assess the importance or contribution of specific metrics, and parameterize moving windows or characterize the landscape at varying scales using alternative methods while highlighting strengths, drawbacks, and knowledge gaps for specific techniques. Recent developments, such as explainable machine learning and convolutional neural network (CNN)-based deep learning, may guide and/or minimize the need for feature space engineering and ease the use of DLSMs in predictive modeling tasks
    • …
    corecore