7,917 research outputs found

    Compute-and-Forward: Harnessing Interference through Structured Codes

    Get PDF
    Interference is usually viewed as an obstacle to communication in wireless networks. This paper proposes a new strategy, compute-and-forward, that exploits interference to obtain significantly higher rates between users in a network. The key idea is that relays should decode linear functions of transmitted messages according to their observed channel coefficients rather than ignoring the interference as noise. After decoding these linear equations, the relays simply send them towards the destinations, which given enough equations, can recover their desired messages. The underlying codes are based on nested lattices whose algebraic structure ensures that integer combinations of codewords can be decoded reliably. Encoders map messages from a finite field to a lattice and decoders recover equations of lattice points which are then mapped back to equations over the finite field. This scheme is applicable even if the transmitters lack channel state information.Comment: IEEE Trans. Info Theory, to appear. 23 pages, 13 figure

    Approaching Gaussian Relay Network Capacity in the High SNR Regime: End-to-End Lattice Codes

    Get PDF
    We present a natural and low-complexity technique for achieving the capacity of the Gaussian relay network in the high SNR regime. Specifically, we propose the use of end-to-end structured lattice codes with the amplify-and-forward strategy, where the source uses a nested lattice code to encode the messages and the destination decodes the messages by lattice decoding. All intermediate relays simply amplify and forward the received signals over the network to the destination. We show that the end-to-end lattice-coded amplify-and-forward scheme approaches the capacity of the layered Gaussian relay network in the high SNR regime. Next, we extend our scheme to non-layered Gaussian relay networks under the amplify-and-forward scheme, which can be viewed as a Gaussian intersymbol interference (ISI) channel. Compared with other schemes, our approach is significantly simpler and requires only the end-to-end design of the lattice precoding and decoding. It does not require any knowledge of the network topology or the individual channel gains

    Nested Lattice Codes for Gaussian Relay Networks with Interference

    Full text link
    In this paper, a class of relay networks is considered. We assume that, at a node, outgoing channels to its neighbors are orthogonal, while incoming signals from neighbors can interfere with each other. We are interested in the multicast capacity of these networks. As a subclass, we first focus on Gaussian relay networks with interference and find an achievable rate using a lattice coding scheme. It is shown that there is a constant gap between our achievable rate and the information theoretic cut-set bound. This is similar to the recent result by Avestimehr, Diggavi, and Tse, who showed such an approximate characterization of the capacity of general Gaussian relay networks. However, our achievability uses a structured code instead of a random one. Using the same idea used in the Gaussian case, we also consider linear finite-field symmetric networks with interference and characterize the capacity using a linear coding scheme.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    The Multi-way Relay Channel

    Get PDF
    The multiuser communication channel, in which multiple users exchange information with the help of a relay terminal, termed the multi-way relay channel (mRC), is introduced. In this model, multiple interfering clusters of users communicate simultaneously, where the users within the same cluster wish to exchange messages among themselves. It is assumed that the users cannot receive each other's signals directly, and hence the relay terminal in this model is the enabler of communication. In particular, restricted encoders, which ignore the received channel output and use only the corresponding messages for generating the channel input, are considered. Achievable rate regions and an outer bound are characterized for the Gaussian mRC, and their comparison is presented in terms of exchange rates in a symmetric Gaussian network scenario. It is shown that the compress-and-forward (CF) protocol achieves exchange rates within a constant bit offset of the exchange capacity independent of the power constraints of the terminals in the network. A finite bit gap between the exchange rates achieved by the CF and the amplify-and-forward (AF) protocols is also shown. The two special cases of the mRC, the full data exchange model, in which every user wants to receive messages of all other users, and the pairwise data exchange model which consists of multiple two-way relay channels, are investigated in detail. In particular for the pairwise data exchange model, in addition to the proposed random coding based achievable schemes, a nested lattice coding based scheme is also presented and is shown to achieve exchange rates within a constant bit gap of the exchange capacity.Comment: Revised version of our submission to the Transactions on Information Theor

    Relaying Simultaneous Multicast Messages

    Full text link
    The problem of multicasting multiple messages with the help of a relay, which may also have an independent message of its own to multicast, is considered. As a first step to address this general model, referred to as the compound multiple access channel with a relay (cMACr), the capacity region of the multiple access channel with a "cognitive" relay is characterized, including the cases of partial and rate-limited cognition. Achievable rate regions for the cMACr model are then presented based on decode-and-forward (DF) and compress-and-forward (CF) relaying strategies. Moreover, an outer bound is derived for the special case in which each transmitter has a direct link to one of the receivers while the connection to the other receiver is enabled only through the relay terminal. Numerical results for the Gaussian channel are also provided.Comment: This paper was presented at the IEEE Information Theory Workshop, Volos, Greece, June 200
    • …
    corecore