1,081 research outputs found

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Performance Analysis of Multicast Mobility in a Hierarchical Mobile IP Proxy Environment

    Full text link
    Mobility support in IPv6 networks is ready for release as an RFC, stimulating major discussions on improvements to meet real-time communication requirements. Sprawling hot spots of IP-only wireless networks at the same time await voice and videoconferencing as standard mobile Internet services, thereby adding the request for multicast support to real-time mobility. This paper briefly introduces current approaches for seamless multicast extensions to Mobile IPv6. Key issues of multicast mobility are discussed. Both analytically and in simulations comparisons are drawn between handover performance characteristics, dedicating special focus on the M-HMIPv6 approach.Comment: 11 pages, 7 figure

    Monitoring and orchestration of network slices for 5G Networks

    Get PDF
    Mención Internacional en el título de doctorEste trabajo se ha realizado bajo la ayuda concedida por la Comunidad de Madrid en la Convocatoria de 2017 de Ayudas para la Realización de Doctorados Industriales en la Comunidad de Madrid (Orden 3109/2017, de 29 de agosto), con referencia IND2017/TIC-7732. This work was partly funded by the European Commission under the European Union’s Horizon 2020 program - grant agreement number 815074 (5G EVE project). The Ph.D thesis solely reflects the views of the author. The Commission is not responsible for the contents of this Ph.D thesis or any use made thereof.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Antonio de la Oliva Delgado.- Secretaria: Elisa Rojas Sánchez.- Vocal: David Manuel Gutiérrez Estéve

    Serverless Vehicular Edge Computing for the Internet of Vehicles

    Get PDF
    Rapid growth in the popularity of smart vehicles and increasing demand for vehicle autonomy brings new opportunities for vehicular edge computing (VEC). VEC aims at offloading the time-sensitive computational load of connected vehicles to edge devices, e.g., roadside units. However, VEC offloading raises complex resource management challenges and, thus, remains largely inaccessible to automotive companies. Recently, serverless computing emerged as a convenient approach to the execution of functions without the hassle of infrastructure management. In this work, we propose the idea of serverless VEC as the execution paradigm for Internet of Vehicles applications. Further, we analyze its benefits and drawbacks as well as identify technology gaps. We also propose emulation as a design, evaluation, and experimentation methodology for serverless VEC solutions. Using our emulation toolkit, we validate the feasibility of serverless VEC for real-world traffic scenarios.We would like to thank Asama Qureshi for his contribution to the traffic visualizer application. We would also like to acknowledge support through the Australian Research Council's funded projects DP230100081 and FT180100140. This work is also partially supported by the Spanish Ministry of Economic Affairs and Digital Transformation, the European Union-NextGenerationEU through the UNICO 5G IþD SORUS project and by the NWO OffSense, EU Horizon Graph-Massivizer and CLOUDSTARS projects
    • …
    corecore