576 research outputs found

    Weak Secrecy in the Multi-Way Untrusted Relay Channel with Compute-and-Forward

    Full text link
    We investigate the problem of secure communications in a Gaussian multi-way relay channel applying the compute-and-forward scheme using nested lattice codes. All nodes employ half-duplex operation and can exchange confidential messages only via an untrusted relay. The relay is assumed to be honest but curious, i.e., an eavesdropper that conforms to the system rules and applies the intended relaying scheme. We start with the general case of the single-input multiple-output (SIMO) L-user multi-way relay channel and provide an achievable secrecy rate region under a weak secrecy criterion. We show that the securely achievable sum rate is equivalent to the difference between the computation rate and the multiple access channel (MAC) capacity. Particularly, we show that all nodes must encode their messages such that the common computation rate tuple falls outside the MAC capacity region of the relay. We provide results for the single-input single-output (SISO) and the multiple-input single-input (MISO) L-user multi-way relay channel as well as the two-way relay channel. We discuss these results and show the dependency between channel realization and achievable secrecy rate. We further compare our result to available results in the literature for different schemes and show that the proposed scheme operates close to the compute-and-forward rate without secrecy.Comment: submitted to JSAC Special Issue on Fundamental Approaches to Network Coding in Wireless Communication System

    Cooperative Transmission for a Vector Gaussian Parallel Relay Network

    Full text link
    In this paper, we consider a parallel relay network where two relays cooperatively help a source transmit to a destination. We assume the source and the destination nodes are equipped with multiple antennas. Three basic schemes and their achievable rates are studied: Decode-and-Forward (DF), Amplify-and-Forward (AF), and Compress-and-Forward (CF). For the DF scheme, the source transmits two private signals, one for each relay, where dirty paper coding (DPC) is used between the two private streams, and a common signal for both relays. The relays make efficient use of the common information to introduce a proper amount of correlation in the transmission to the destination. We show that the DF scheme achieves the capacity under certain conditions. We also show that the CF scheme is asymptotically optimal in the high relay power limit, regardless of channel ranks. It turns out that the AF scheme also achieves the asymptotic optimality but only when the relays-to-destination channel is full rank. The relative advantages of the three schemes are discussed with numerical results.Comment: 35 pages, 10 figures, submitted to IEEE Transactions on Information Theor

    Analysis and Ad-hoc Networking Solutions for Cooperative Relaying Systems

    Get PDF
    Users of mobile networks are increasingly demanding higher data rates from their service providers. To cater to this demand, various signal processing and networking algorithms have been proposed. Amongst them the multiple input multiple output (MIMO) scheme of wireless communications is one of the most promising options. However, due to certain physical restrictions, e.g., size, it is not possible for many devices to have multiple antennas on them. Also, most of the devices currently in use are single-antenna devices. Such devices can make use of the MIMO scheme by employing cooperative MIMO methods. This involves nearby nodes utilizing the antennas of each other to form virtual antenna arrays (VAAs). Nodes with limited communication ranges can further employ multi-hopping to be able to communicate with far away nodes. However, an ad-hoc communications scheme with cooperative MIMO multi-hopping can be challenging to implement because of its de-centralized nature and lack of a centralized controling entity such as a base-station. This thesis looks at methods to alleviate the problems faced by such networks.In the first part of this thesis, we look, analytically, at the relaying scheme under consideration and derive closed form expressions for certain performance measures (signal to noise ratio (SNR), symbol error rate (SER), bit error rate (BER), and capacity) for the co-located and cooperative multiple antenna schemes in different relaying configurations (amplify-and-forward and decode-and-forward) and different antenna configurations (single input single output (SISO), single input multiple output (SIMO) and MIMO). These expressions show the importance of reducing the number of hops in multi-hop communications to achieve a better performance. We can also see the impact of different antenna configurations and different transmit powers on the number of hops through these simplified expressions.We also look at the impact of synchronization errors on the cooperative MIMO communications scheme and derive a lower bound of the SINR and an expression for the BER in the high SNR regime. These expressions can help the network designers to ensure that the quality of service (QoS) is satisfied even in the worst-case scenarios. In the second part of the thesis we present some algorithms developed by us to help the set-up and functioning of cluster-based ad-hoc networks that employ cooperative relaying. We present a clustering algorithm that takes into account the battery status of nodes in order to ensure a longer network life-time. We also present a routing mechanism that is tailored for use in cooperative MIMO multi-hop relaying. The benefits of both schemes are shown through simulations.A method to handle data in ad-hoc networks using distributed hash tables (DHTs) is also presented. Moreover, we also present a physical layer security mechanism for multi-hop relaying. We also analyze the physical layer security mechanism for the cooperative MIMO scheme. This analysis shows that the cooperative MIMO scheme is more beneficial than co-located MIMO in terms of the information theoretic limits of the physical layer security.Nutzer mobiler Netzwerke fordern zunehmend höhere Datenraten von ihren Dienstleistern. Um diesem Bedarf gerecht zu werden, wurden verschiedene Signalverarbeitungsalgorithmen entwickelt. Dabei ist das "Multiple input multiple output" (MIMO)-Verfahren für die drahtlose Kommunikation eine der vielversprechendsten Techniken. Jedoch ist aufgrund bestimmter physikalischer Beschränkungen, wie zum Beispiel die Baugröße, die Verwendung von mehreren Antennen für viele Endgeräte nicht möglich. Dennoch können solche Ein-Antennen-Geräte durch den Einsatz kooperativer MIMO-Verfahren von den Vorteilen des MIMO-Prinzips profitieren. Dabei schließen sich naheliegende Knoten zusammen um ein sogenanntes virtuelles Antennen-Array zu bilden. Weiterhin können Knoten mit beschränktem Kommunikationsbereich durch mehrere Hops mit weiter entfernten Knoten kommunizieren. Allerdings stellt der Aufbau eines solchen Ad-hoc-Netzwerks mit kooperativen MIMO-Fähigkeiten aufgrund der dezentralen Natur und das Fehlen einer zentral-steuernden Einheit, wie einer Basisstation, eine große Herausforderung dar. Diese Arbeit befasst sich mit den Problemstellungen dieser Netzwerke und bietet verschiedene Lösungsansätze.Im ersten Teil dieser Arbeit werden analytisch in sich geschlossene Ausdrücke für ein kooperatives Relaying-System bezüglicher verschiedener Metriken, wie das Signal-Rausch-Verhältnis, die Symbolfehlerrate, die Bitfehlerrate und die Kapazität, hergeleitet. Dabei werden die "Amplify-and forward" und "Decode-and-forward" Relaying-Protokolle, sowie unterschiedliche Mehrantennen-Konfigurationen, wie "Single input single output" (SISO), "Single input multiple output" (SIMO) und MIMO betrachtet. Diese Ausdrücke zeigen die Bedeutung der Reduzierung der Hop-Anzahl in Mehr-Hop-Systemen, um eine höhere Leistung zu erzielen. Zudem werden die Auswirkungen verschiedener Antennen-Konfigurationen und Sendeleistungen auf die Anzahl der Hops analysiert.  Weiterhin wird der Einfluss von Synchronisationsfehlern auf das kooperative MIMO-Verfahren herausgestellt und daraus eine untere Grenze für das Signal-zu-Interferenz-und-Rausch-Verhältnis, sowie ein Ausdruck für die Bitfehlerrate bei hohem Signal-Rausch-Verhältnis entwickelt. Diese Zusammenhänge sollen Netzwerk-Designern helfen die Qualität des Services auch in den Worst-Case-Szenarien sicherzustellen. Im zweiten Teil der Arbeit werden einige innovative Algorithmen vorgestellt, die die Einrichtung und die Funktionsweise von Cluster-basierten Ad-hoc-Netzwerken, die kooperative Relays verwenden, erleichtern und verbessern. Darunter befinden sich ein Clustering-Algorithmus, der den Batteriestatus der Knoten berücksichtigt, um eine längere Lebensdauer des Netzwerks zu gewährleisten und ein Routing-Mechanismus, der auf den Einsatz in kooperativen MIMO Mehr-Hop-Systemen zugeschnitten ist. Die Vorteile beider Algorithmen werden durch Simulationen veranschaulicht. Eine Methode, die Daten in Ad-hoc-Netzwerken mit verteilten Hash-Tabellen behandelt wird ebenfalls vorgestellt. Darüber hinaus wird auch ein Sicherheitsmechanismus für die physikalische Schicht in Multi-Hop-Systemen und kooperativen MIMO-Systemen präsentiert. Eine Analyse zeigt, dass das kooperative MIMO-Verfahren deutliche Vorteile gegenüber dem konventionellen MIMO-Verfahren hinsichtlich der informationstheoretischen Grenzen der Sicherheit auf der physikalischen Schicht aufweist

    Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks

    Full text link
    We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is utilized in KK-cell uplink networks with time-invariant channel coefficients and base stations (BSs) having MM antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other BSs. Two OIM protocols are shown according to the number SS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown that KMKM DoFs are achievable under the OIN protocol with MM selected users per cell, if the total number NN of users in a cell scales at least as SNR(K1)M\text{SNR}^{(K-1)M}. Similarly, it turns out that the OIA scheme with SS(<M<M) selected users achieves KSKS DoFs, if NN scales faster than SNR(K1)S\text{SNR}^{(K-1)S}. These results indicate that there exists a trade-off between the achievable DoFs and the minimum required NN. By deriving the corresponding upper bound on the DoFs, it is shown that the OIN scheme is DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios
    corecore