43,037 research outputs found

    The capacity-C torch problem

    Get PDF
    The torch problem (also known as the bridge problem or the flashlight problem) is about getting a number of people across a bridge as quickly as possible under certain constraints. Although a very simply stated problem, the solution is surprisingly non-trivial. The case in which there are just four people and the capacity of the bridge is two is a well-known puzzle, widely publicised on the internet. We consider the general problem where the number of people, their individual crossing times and the capacity of the bridge are all input parameters. We present two methods to determine the shortest total crossing time: the first expresses the problem as an integer-programming problem that can be solved by a standard linear-programming package, and the second expresses the problem as a shortest-path problem in an acyclic directed graph, i.e. a dynamic-programming solution. The complexity of the integer-programming solution is difficult to predict; its main purpose is to act as an independent test of the correctness of the results returned by the second solution method. The dynamic-programming solution has best- and worst-case time complexity proportional to the square of the number of people. An empirical comparison of the efficiency of both methods is also presented. This manuscript has been accepted for publication in Science of Computer Programming. The manuscript has undergone copyediting, typesetting, and review of the resulting proof before being published in its final form. Please note that during the production process errors may have been discovered which could affect the content, and all disclaimers that apply to the journal apply to this manuscript

    Rapidly solidified titanium alloys by melt overflow

    Get PDF
    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling

    vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design

    Full text link
    The most widely used machine learning frameworks require users to carefully tune their memory usage so that the deep neural network (DNN) fits into the DRAM capacity of a GPU. This restriction hampers a researcher's flexibility to study different machine learning algorithms, forcing them to either use a less desirable network architecture or parallelize the processing across multiple GPUs. We propose a runtime memory manager that virtualizes the memory usage of DNNs such that both GPU and CPU memory can simultaneously be utilized for training larger DNNs. Our virtualized DNN (vDNN) reduces the average GPU memory usage of AlexNet by up to 89%, OverFeat by 91%, and GoogLeNet by 95%, a significant reduction in memory requirements of DNNs. Similar experiments on VGG-16, one of the deepest and memory hungry DNNs to date, demonstrate the memory-efficiency of our proposal. vDNN enables VGG-16 with batch size 256 (requiring 28 GB of memory) to be trained on a single NVIDIA Titan X GPU card containing 12 GB of memory, with 18% performance loss compared to a hypothetical, oracular GPU with enough memory to hold the entire DNN.Comment: Published as a conference paper at the 49th IEEE/ACM International Symposium on Microarchitecture (MICRO-49), 201

    The Variable Polarity Plasma Arc Welding Process: Its Application to the Space Shuttle External Tank

    Get PDF
    This report describes progress in the implementation of the Variable Polarity Plasma Arc Welding (VPPAW) process at the External Tank (ET) assembly facility. Design allowable data has been developed for thicknesses up to 1.00 in. More than 24,000 in. of welding on liquid oxygen and liquid hydrogen cylinders has been made without an internal defect

    Toward a Phenomenological Pragmatics of Enactive Perception

    Get PDF
    The enactive approach to perception is generating an extensive amount of interest and debate in the cognitive sciences. One particularly contentious issue has been how best to characterize the perceptual experiences reported by subjects who have mastered the skillful use of a perceptual supplementation (PS) device. This paper argues that this issue cannot be resolved with the use of third-person methodologies alone, but that it requires the development of a phenomenological pragmatics. In particular, it is necessary that the experimenters become skillful in the use of PS devices themselves. The "Enactive Torch" is proposed as an experimental platform which is cheap, non-intrusive and easy to replicate, so as to enable researchers to corroborate reported experiences with their own phenomenology more easily

    The Use of Contact Heat Generators of the New Generation for Heat Production

    Full text link
    We substantiated the need for searching for, and realization of, fundamentally new approaches, using more efficient physical, heat-mass-exchanging and aerodynamic processes, which will make it possible to improve energy effectiveness and ecological cleanliness of heat generation in the systems for individual and decentralized heat supply.For the heat supply to large cities and industrial regions, we examined the advantages of using highly efficient contact heat-generators of different types, which include compactness due to low metal consumption and, as a result, attractive price.It is proposed to use a heat-generator of contact type of the new generation, with the aid of which it was possible to solve a set of problems on the qualitative combustion of fuel and effective heat exchange of gases with the heated water. The use of tubular technology for the combustion of gas is its special feature. Due to it, quality heat exchanging characteristics are provided.In view of further studies, we presented the relevance of creating heat-generators with the use of highly effective hydrogen technologies, which will make it possible to devise the new energy paradigm of heat supply for residential areas and industrial zones through the possibility of accumulation of electrical energy and accumulation of hydrogen

    Simulator test to study hot-flow problems related to a gas cooled reactor

    Get PDF
    An advance study of materials, fuel injection, and hot flow problems related to the gas core nuclear rocket is reported. The first task was to test a previously constructed induction heated plasma GCNR simulator above 300 kW. A number of tests are reported operating in the range of 300 kW at 10,000 cps. A second simulator was designed but not constructed for cold-hot visualization studies using louvered walls. A third task was a paper investigation of practical uranium feed systems, including a detailed discussion of related problems. The last assignment resulted in two designs for plasma nozzle test devices that could be operated at 200 atm on hydrogen

    Guidelines for the Production of Rapeseed in the Delta-Clearwater Area of Alaska

    Get PDF
    Experience with the production of rapeseed in Alaska is limited. The material presented in this report is for preliminary planning only. It was prepared on the basis of published Canadian research, and studies of variety trials and planting dates during 1977 in interior Alaska. These guidelines will be revised when the results of additional research and experience with rapeseed production in Alaska becomes available

    Feasibility of mining lunar resources for earth use: Circa 2000 AD. Volume 1: Summary

    Get PDF
    The feasibility of obtaining lunar minerals for terrestrial uses is examined. Preliminary results gave indications that it will not be economically feasible to mine, refine, and transport lunar materials to Earth for consumption. A broad systems approach was used to analyze the problem. It was determined that even though the procedure was not economically advisable, the concept for the operations is technically sound

    A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    Get PDF
    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights
    corecore