49,895 research outputs found

    Molecular access to multi-dimensionally encoded information

    Get PDF
    Polymer scientist have only recently realized that information storage on the molecular level is not only restricted to DNA-based systems. Similar encoding and decoding of data have been demonstrated on synthetic polymers that could overcome some of the drawbacks associated with DNA, such as the ability to make use of a larger monomer alphabet. This feature article describes some of the recent data storage strategies that were investigated, ranging from writing information on linear sequence-defined macromolecules up to layer-by-layer casted surfaces and QR codes. In addition, some strategies to increase storage density are elaborated and some trends regarding future perspectives on molecular data storage from the literature are critically evaluated. This work ends with highlighting the demand for new strategies setting up reliable solutions for future data management technologies

    ARQ for Network Coding

    Full text link
    A new coding and queue management algorithm is proposed for communication networks that employ linear network coding. The algorithm has the feature that the encoding process is truly online, as opposed to a block-by-block approach. The setup assumes a packet erasure broadcast channel with stochastic arrivals and full feedback, but the proposed scheme is potentially applicable to more general lossy networks with link-by-link feedback. The algorithm guarantees that the physical queue size at the sender tracks the backlog in degrees of freedom (also called the virtual queue size). The new notion of a node "seeing" a packet is introduced. In terms of this idea, our algorithm may be viewed as a natural extension of ARQ schemes to coded networks. Our approach, known as the drop-when-seen algorithm, is compared with a baseline queuing approach called drop-when-decoded. It is shown that the expected queue size for our approach is O(11ρ)O(\frac1{1-\rho}) as opposed to Ω(1(1ρ)2)\Omega(\frac1{(1-\rho)^2}) for the baseline approach, where ρ\rho is the load factor.Comment: Submitted to the 2008 IEEE International Symposium on Information Theory (ISIT 2008

    Network coding meets TCP

    Full text link
    We propose a mechanism that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs - the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-like sliding-window approach to network coding. Our scheme has the nice property that packet losses are essentially masked from the congestion control algorithm. Our algorithm therefore reacts to packet drops in a smooth manner, resulting in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our experiments show that our algorithm achieves higher throughput compared to TCP in the presence of lossy wireless links. We also establish the soundness and fairness properties of our algorithm.Comment: 9 pages, 9 figures, submitted to IEEE INFOCOM 200

    A model for digital preservation repository risk relationships

    Get PDF
    The paper introduces the Preserved Object and Repository Risk Ontology (PORRO), a model that relates preservation functionality with associated risks and opportunities for their mitigation. Building on work undertaken in a range of EU and UK funded research projects (including the Digital Curation Centre , DigitalPreservationEurope and DELOS ), this ontology illustrates relationships between fundamental digital library goals and their parameters; associated rights and responsibilities; practical activities and resources involved in their accomplishment; and risks facing digital libraries and their collections. Its purpose is to facilitate a comprehensive understanding of risk causality and to illustrate opportunities for mitigation and avoidance. The ontology reflects evidence accumulated from a series of institutional audits and evaluations, including a specific subset of digital libraries in the DELOS project which led to the definition of a digital library preservation risk profile. Its applicability is intended to be widespread, and its coverage expected to evolve to reflect developments within the community. Attendees will gain an understanding of the model and learn how they can utilize this online resource to inform their own risk management activities

    Timing subsystem development: Network synchronization experiments

    Get PDF
    This paper describes a program in which several experimental timing subsystem prototypes were designed, fabricated, and field tested using a small network of troposcatter and microwave digital communication links. This equipment was responsible for modem/radio interfacing, time interval measurement, clock adjustment and distribution, synchronization technique, and node to node information exchange. Presented are discussions of the design approach, measurement plan, and performance assessment methods. Recommendations are made based on the findings of the test program and an evaluation of the design of both the hardware and software elements of the timing subsystem prototypes

    The patterning of finance/security : a designerly walkthrough of challenger banking apps

    Get PDF
    Culture is being ‘appified’. Diverse, pre-existing everyday activities are being redesigned so they happen with and through apps. While apps are often encountered as equivalent icons in apps stores or digital devices, the processes of appification – that is, the actions required to turn something into an app – vary significantly. In this article, we offer a comparative analysis of a number of ‘challenger’ banking apps in the United Kingdom. As a retail service, banking is highly regulated and banks must take steps to identify and verify their customers before entering a retail relationship. Once established, this ‘secured’ financial identity underpins a lot of everyday economic activity. Adopting the method of the walkthrough analysis, we study the specific ways these processes of identifying and verifying the identity of the customer (now the user) occur through user onboarding. We argue that banking apps provide a unique way of binding the user to an identity, one that combines the affordances of smart phones with the techniques, knowledge and patterns of user experience design. With the appification of banking, we see new processes of security folded into the everyday experience of apps. Our analysis shows how these binding identities are achieved through what we refer to as the patterning of finance/security. This patterning is significant, moreover, given its availability for wider circulation beyond the context of retail banking apps
    corecore