4 research outputs found

    Secure mobile radio communication over narrowband RF channel.

    Get PDF
    by Wong Chun Kau, Jolly.Thesis (M.Phil.)--Chinese University of Hong Kong, 1992.Includes bibliographical references (leaves 84-88).ABSTRACT --- p.1ACKNOWLEDGEMENT --- p.3Chapter 1. --- INTRODUCTION --- p.7Chapter 1.1 --- Land Mobile Radio (LMR) CommunicationsChapter 1.2 --- Paramilitary Communications SecurityChapter 1.3 --- Voice Scrambling MethodsChapter 1.4 --- Digital Voice EncryptionChapter 1.5 --- Digital Secure LMRChapter 2. --- DESIGN GOALS --- p.20Chapter 2.1 --- System Concept and ConfigurationChapter 2.2 --- Operational RequirementsChapter 2.2.1 --- Operating conditionsChapter 2.2.2 --- Intelligibility and speech qualityChapter 2.2.3 --- Field coverage and transmission delayChapter 2.2.4 --- Reliability and maintenanceChapter 2.3 --- Functional RequirementsChapter 2.3.1 --- Major system featuresChapter 2.3.2 --- Cryptographic featuresChapter 2.3.3 --- Phone patch facilityChapter 2.3.4 --- Mobile data capabilityChapter 2.4 --- Bandwidth RequirementsChapter 2.5 --- Bit Error Rate RequirementsChapter 3. --- VOICE CODERS --- p.38Chapter 3.1 --- Digital Speech Coding MethodsChapter 3.1.1 --- Waveform codingChapter 3.1.2 --- Linear predictive codingChapter 3.1.3 --- Sub-band codingChapter 3.1.4 --- VocodersChapter 3.2 --- Performance EvaluationChapter 4. --- CRYPTOGRAPHIC CONCERNS --- p.52Chapter 4.1 --- Basic Concepts and CryptoanalysisChapter 4.2 --- Digital Encryption TechniquesChapter 4.3 --- Crypto SynchronizationChapter 4.3.1 --- Auto synchronizationChapter 4.3.2 --- Initial synchronizationChapter 4.3.3 --- Continuous synchronizationChapter 4.3.4 --- Hybrid synchronizationChapter 5. --- DIGITAL MODULATION --- p.63Chapter 5.1 --- Narrowband Channel RequirementsChapter 5.2 --- Narrowband Digital FMChapter 5.3 --- Performance EvaluationChapter 6. --- SYSTEM IMPLEMENTATION --- p.71Chapter 6.1 --- Potential EMC ProblemsChapter 6.2 --- Frequency PlanningChapter 6.3 --- Key ManagementChapter 6.4 --- Potential Electromagnetic Compatibility (EMC) ProblemsChapter 7. --- CONCLUSION --- p.80LIST OF ILLUSTRATIONS --- p.81REFERENCES --- p.82APPENDICES --- p.89Chapter I. --- Path Propagation Loss(L) Vs Distance (d)Chapter II. --- Speech Quality Assessment Tests performedby Special Duties Unit (SDU

    Harvesting time-frequency-space diversity with coded modulation for underwater acoustic communications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 172-180).The goal of this thesis is to design a low-complexity, high data-rate acoustic communications system with robust performance under various channel conditions. The need for robust performance emerges because underwater acoustic (UWA) channels have time-varying statistics, thus a coded modulation scheme optimally designed for a specific channel model will be suboptimal when the channel statistics change. A robust approach should use a coded modulation scheme that provides good performance in both additive white Gaussian noise (AWGN) and Rayleigh fading channels (and, consequently in the Rice fading channel, an intermediate channel model between the latter two). Hence, high data-rate coded modulation schemes should exhibit both large free Euclidean and Hamming distances. In addition, coded modulation is regarded as a way to achieve time diversity over interleaved flat fading channels. UWA channels offer additional diversity gains in both frequency and space; therefore a system that exploits diversity in all three domains is highly desirable. Two systems with the same bit-rate and complexity but different free Euclidean and Hamming distances are designed and compared. The first system combines Trellis Coded Modulation (TCM) based on an 8-PSK signal set, symbol interleaving and orthogonal frequency-division multiplexing (OFDM). The second system combines bit-interleaved coded modulation (BICM), based on a convolutional code and a 16-QAM signal set, with OFDM.(cont.) Both systems are combined with specific space-time block codes (STBC) when two or three transmit antennas are used. Moreover, pilot-symbol-aided channel estimation is performed by using a robust 2-D Wiener filter, which copes with channel model mismatch by employing appropriate time and frequency correlation functions. The following result was obtained by testing the aforementioned systems using both simulated and experimental data from RACE '08: the BICM scheme performs better when the UWA channel exhibits limited spatial diversity. This result implies that coded modulation schemes emphasizing higher Hamming distances are preferred when there is no option for many receive/transmit hydrophones. The TCM scheme, on the other hand, becomes a better choice when the UWA channel demonstrates a high spatial diversity order. This result implies that coded modulation schemes emphasizing higher free Euclidean distances are preferred when multiple receive/transmit hydrophones are deployed.by Konstantinos Pelekanakis.Ph.D

    Parameterized analysis of optical inter-satellite links for high resolution satellite communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 151-154).The use of antenna arrays to exploit spatial information in single and multi-user RF communication receivers is well established for reducing interference and enabling frequency reuse. Antenna arrays have been deployed in single satellite applications but arrays have not been exploited in multi-satellite constellations where increased array size enables high spatial selectivity between ground transmitters. One requirement for these array systems is sufficient fidelity in transporting the received RF signals at each antenna to the array processor. Optical inter-satellite link architectures for signal transport are investigated and parameterized models to compare the performance of each are synthesized. Both analog and digital modulation schemes for the link are considered. A two-channel receiver with both low and high interference is analyzed. It is shown that high resolution satellite array receivers are practical with low required optical power. The optimum selection of transport architecture is shown by selecting for lowest error probability or minimum required optical power. A satellite-to-satellite distance threshold is found for selecting the optimum inter-satellite link architecture for a given application.by James Bernard Glettler.S.M

    The capacity of constant envelope, continuous phase signals over AWGN channel under Carson's rule bandwidth constraint

    No full text
    corecore