46 research outputs found

    Quadrature methods for 2D and 3D problems

    Get PDF
    AbstractIn this paper we give an overview on well-known stability and convergence results for simple quadrature methods based on low-order composite quadrature rules and applied to the numerical solution of integral equations over smooth manifolds. First, we explain the methods for the case of second-kind equations. Then we discuss what is known for the analysis of pseudodifferential equations. We explain why these simple methods are not recommended for integral equations over domains with dimension higher than one. Finally, for the solution of a two-dimensional singular integral equation, we prove a new result on a quadrature method based on product rules

    Heterogeneous volumetric data mapping and its medical applications

    Get PDF
    With the advance of data acquisition techniques, massive solid geometries are being collected routinely in scientific tasks, these complex and unstructured data need to be effectively correlated for various processing and analysis. Volumetric mapping solves bijective low-distortion correspondence between/among 3D geometric data, and can serve as an important preprocessing step in many tasks in compute-aided design and analysis, industrial manufacturing, medical image analysis, to name a few. This dissertation studied two important volumetric mapping problems: the mapping of heterogeneous volumes (with nonuniform inner structures/layers) and the mapping of sequential dynamic volumes. To effectively handle heterogeneous volumes, first, we studied the feature-aligned harmonic volumetric mapping. Compared to previous harmonic mapping, it supports the point, curve, and iso-surface alignment, which are important low-dimensional structures in heterogeneous volumetric data. Second, we proposed a biharmonic model for volumetric mapping. Unlike the conventional harmonic volumetric mapping that only supports positional continuity on the boundary, this new model allows us to have higher order continuity C1C^1 along the boundary surface. This suggests a potential model to solve the volumetric mapping of complex and big geometries through divide-and-conquer. We also studied the medical applications of our volumetric mapping in lung tumor respiratory motion modeling. We were building an effective digital platform for lung tumor radiotherapy based on effective volumetric CT/MRI image matching and analysis. We developed and integrated in this platform a set of geometric/image processing techniques including advanced image segmentation, finite element meshing, volumetric registration and interpolation. The lung organ/tumor and surrounding tissues are treated as a heterogeneous region and a dynamic 4D registration framework is developed for lung tumor motion modeling and tracking. Compared to the previous 3D pairwise registration, our new 4D parameterization model leads to a significantly improved registration accuracy. The constructed deforming model can hence approximate the deformation of the tissues and tumor

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research

    Order-Preserving Derivative Approximation with Periodic Radial Basis Functions

    Get PDF
    In this exploratory paper we study the convergence rates of an iterated method for approximating derivatives of periodic functions using radial basis function (RBF) interpolation. Given a target function sampled on some node set, an approximation of the m th derivative is obtained by m successive applications of the operator “interpolate, then differentiate”- this process is known in the spline community as successive splines or iterated splines. For uniformly spaced nodes on the circle, we give a sufficient condition on the RBF kernel to guarantee that, when the error is measured only at the nodes, this iterated method approximates all derivatives with the same rate of convergence. We show that thin-plate spline, power function, and Matérn kernels restricted to the circle all satisfy this condition, and numerical evidence is provided to show that this phenomena occurs for some other popular RBF kernels. Finally, we consider possible extensions to higher-dimensional periodic domains by numerically studying the convergence of an iterated method for approximating the surface Laplace (Laplace-Beltrami) operator using RBF interpolation on the unit sphere and a torus

    Isogeometric continuity constraints for multi-patch shells governed by fourth-order deformation and phase field models

    Full text link
    This work presents numerical techniques to enforce continuity constraints on multi-patch surfaces for three distinct problem classes. The first involves structural analysis of thin shells that are described by general Kirchhoff-Love kinematics. Their governing equation is a vector-valued, fourth-order, nonlinear, partial differential equation (PDE) that requires at least C1C^1-continuity within a displacement-based finite element formulation. The second class are surface phase separations modeled by a phase field. Their governing equation is the Cahn-Hilliard equation - a scalar, fourth-order, nonlinear PDE - that can be coupled to the thin shell PDE. The third class are brittle fracture processes modeled by a phase field approach. In this work, these are described by a scalar, fourth-order, nonlinear PDE that is similar to the Cahn-Hilliard equation and is also coupled to the thin shell PDE. Using a direct finite element discretization, the two phase field equations also require at least a C1C^1-continuous formulation. Isogeometric surface discretizations - often composed of multiple patches - thus require constraints that enforce the C1C^1-continuity of displacement and phase field. For this, two numerical strategies are presented: For this, two numerical strategies are presented: A Lagrange multiplier formulation and a penalty method. The curvilinear shell model including the geometrical constraints is taken from Duong et al. (2017) and it is extended to model the coupled phase field problems on thin shells of Zimmermann et al. (2019) and Paul et al. (2020) on multi-patches. Their accuracy and convergence are illustrated by several numerical examples considering deforming shells, phase separations on evolving surfaces, and dynamic brittle fracture of thin shells.Comment: In this version, typos were fixed, Chapter 6.4 is added, Table 1 is updated, and clarifying explanations and remarks are added at several place

    Isogeometric analysis and hierarchical refinement for multi-field contact problems

    Get PDF
    The present work deals with multi-field contact problems in the context of IGA. In particular, a thermomechanical as well as a fracture mechanical system is considered, where novel formulations are introduced for both. The corresponding discrete contact formulations are based on a variationally consistent mortar approach adapted for NURBS discretized and hierarchical refined surfaces. Finally, the capabilities of the proposed framework are demonstrated within numerous numerical examples

    An RBF-FD closest point method for solving PDEs on surfaces

    Get PDF
    Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret, J. Comput. Phys. 231(14):4662-4675, [2012]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.NSERC Canada (RGPIN 227823), Hong Kong Research Grant Council GRF Grant (HKBU 11528205), Hong Kong Baptist University FRG Grant

    エネルギー関数を持つ発展方程式に対する幾何学的数値計算法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 松尾 宇泰, 東京大学教授 中島 研吾, 東京大学准教授 鈴木 秀幸, 東京大学准教授 長尾 大道, 東京大学准教授 齋藤 宣一University of Tokyo(東京大学
    corecore